
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1997

Solution methods for controlled queueing
networks
Sabri Tankut Atan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Systems Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Atan, Sabri Tankut, "Solution methods for controlled queueing networks " (1997). Retrospective Theses and Dissertations. 11438.
https://lib.dr.iastate.edu/rtd/11438

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11438?utm_source=lib.dr.iastate.edu%2Frtd%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfihn master. TJMI

films the text directly from the origmal or copy submitted. Thus, some

thesis and dissertation copies are in typewriter &ce, \̂ Me others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., nuq)s, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Infonnadon Company

300 Noith Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Solution methods for controlled

queueing networks

by

Sabri Tankut Atan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Major Professor: Douglas McBeth

Iowa State University

Ames, Iowa

1997

Copyright 0 Sabri Tankut Atan, 1997. All rights reserved.

www.manaraa.com

UMI Number: 9725389

Copyright 1997 by
Atan, Sabri Tankut

All rights reserved.

UMI Microform 9725389
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Sabri Tankut Atan

has met the dissertation requirements of Iowa State University

Maior Professor

For the Major Department

the Graduate College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS x

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW . . 1

1.1 Introduction 1

1.2 Classification of Problems 3

1.3 Literature Review 5

1.3.1 Routing o

1.3.2 Scheduling S

1.4 Organization 10

CHAPTER 2 ROUTING WITH DEDICATED ARRIVALS 11

2.1 Semi-Markov Decision Process Formulation 13

2.2 Other Formulations 16

2.2.1 Value iteration formulation 16

2.2.2 Linear programming formulation 17

CHAPTER 3 A NEW METHODOLOGY 19

3.1 The Standard Pl-algorithm 20

3.2 Calculation of Relative Values 21

3.2.1 Solving a system of linear equations 22

3.3 Sparsity and State Space Allocation 24

3.4 Initial Solution 25

3.0 The Algorithm 28

www.manaraa.com

iv

3.5.1 Other computational issues 29

3.6 Evaluation of a Policy 30

CHAPTER 4 COMPUTATIONAL RESULTS 32

CHAPTER 5 HEURISTIC METHODS 40

5.1 Never Queue Rule 40

5.2 Individual-optimum Rule 41

5.3 Separable Rule 41

5.4 Greedy Throughput Rule 42

5.5 Hybrid Rule 42

5.6 Computational Results 42

CHAPTER 6 CONCLUSION 46

APPENDLX A GENERAL SOLUTION TECHNIQUES 48

APPENDIX B A RESOURCE ALLOCATION PROBLEM 55

BIBLIOGRAPHY 59

www.manaraa.com

V

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

LIST OF TABLES

The number of states for the routing problem 24

The effect of queue capacities on Z,. /> = 0.98, RNDA 33

The effects of allocating the state space on Zr. p = 0.98, =

2, fX2 = 1, RNDA. Numbers in brackets give the capacities of

queues 34

The effects of allocating the state space on L. p = 0.98, fx i =

5, IJ.2 = 1, RNDA. Numbers in brackets give the capacities of

queues 35

The effects of allocating the state space on L. p = 0.98, =

10, IJ.2 = 1, RNDA. Numbers in brackets give the capacities of

queues 35

PI with direct vs. iterative methods in CPU seconds. RNDA,

I I I — 2 , H 2 = I , ̂ 35

Modified PI vs. VI in CPU seconds. RNDA, fii = 2, //2 = 1; -V

= 100 for p < 0.9, N = 200 otherwise 36

Modified PI: CPU seconds and ^ of iterations. RNDA, fj.i =

2, //2 = 1, N = 100 for p < 0.9, N = 200 otherwise 38

Effects of a more clever state space allocation in CPU seconds.

RNDA, = 2, = 1, iVi = 268, iVj = 134 38

Number of iterations for VI with and without relaxation. N = 30 39

www.manaraa.com

vi

Table 5.1 Performance in L for different heuristic methods. Problems re­

ported in Krishnan's paper. RNDA, iV = 30 43

Table 5.2 Performance in L for different heuristic methods. =2, 1.12 =

1, iV = 50 44

Table 5.3 Performance in L for different heuristic methods. = 2.5, ^2 =

1, iV = 50 44

Table 5.4 Performance in L for different heuristic methods. = 5, fj.2 =

1. iV = .50 45

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 A routing problem (RNDA) 5

Figure 1.2 A scheduling problem 9

Figure 2.1 Routing with dedicated arrivals (RWDA) 12

Figure .3.1 Bernoulli-splitting 26

www.manaraa.com

viii

LIST OF SYMBOLS AND ABBREVIATIONS

MDP: Markov Decision Process

SMDP: Semi-Markov Decision Process

DMDP: Discrete-time Markov Decision Process

QN: Queueing Network

QS: Queueing System

RVVDA: Routing problem With Dedicated Arrivals

RNDA: Routing problem with No Dedicated Arrivals

PI: Policy Iteration

VI: Value Iteration

LP: Linear Programming

lOPT: Individual-OPTimum rule

NQ: Never-Queue rule

GT: Greedy Throughput rule

SEP: SEParable rule

m: Number of parallel queues

Aii): Action set for state i

I: State space

R: A policy

P- Traffic intensity

L: Average number of customers in the system

www.manaraa.com

IX

IV: Average waiting time of a customer

Nr. Capacity of queue i

Tli-. Number of people in queue i including the one in service

m: Service rate for server i

A,: Dedicated arrival rate to queue i

Aq: Generic arrival rate

vi{Ry. Relative value of state i under policy R

9{Ry. Average cost under policy R

Ci- The expected costs until the next decision epoch in the present state i

P i j { a) : The probability of being in state j in the next decision epoch if action a

is taken in the present state i

Tr. The expected time until the next decision epoch for the present state i

www.manaraa.com

X

ACKNOWLEDGMENTS

There are many people I would like to acknowledge. If you are not on the list

then you haven't paid me enough: My mom and sister, my stepfather and the rest

of my family, Susanne Pollmann, Doug McBeth, Ram Pandit, John Jackman. John

Even, David Fernandez-Baca, Ananda VVeerasinghe, Anand, Chizuko and Seiko Shastri,

Volker and Jutta Luft, Miifit and A§ula Yorulmaz, Oguzhan Nuri, Ihsan Giray, Cengiz

Ta§, Erol and Yildiz Aksoy, Rifat Sonmez, Mike Moon, Bakthavatchalam Muralidharan.

Scott Singleton, Peter Brust, Cheng-Kang Chen, Tai-Hung Yang, Cem 5ahin, Ilhan Tan.

Onur Yalqm, Zafer and Qigdem Bulut, Tom Devany, Alejandro Leon-Escamilla, Marcelo

Pinto, Christoph and Audra Hiemcke, Lori Hilpipre, Lynn Franco, Donna Cerka.

Not to mention: Turkish Education Foundation, Parks library, the Engineering .An­

nex, the Rec Center, 223 E 9th Street, my Merkur and .AAA, Iowa's huge skies, and the

.A.mazon forest. This last one may need explanation: During an award ceremony in a

Cheers episode, Dianne thanked the Amazon forest for supplying most of the oxygen we

breathe. This got stuck in my mind. I think it helps you to keep things in perspective.

www.manaraa.com

1

CHAPTER 1 INTRODUCTION AND LITERATURE

REVIEW

1.1 Introduction

The building blocks of a queueing network (QN) consist of one or more input streams

of customers (single units or batches), one or more buffers (finite or infinite), and one or

more servers. In addition to these physical components a set of policies are defined to

specify the rules for queueing and servicing the customers. By adding several of these

building blocks -queueing systems (QSs)- together, a QN is obtained.

Since the birth of queueing theory at the beginning of the twentieth century, literature

on the subject has grown enormously. In this dissertation, we focus on controlled QNs as

opposed to descriptive problems where one is interested in a certain performance measure

for the system such as average waiting time of each customer, or expected number of

customers in the system per unit time. In control problems, the process happens in

continuous time. However, a controller can, for example, change certain parameters of

the system, or affect how the customers are routed through the system at discrete time

points, called decision epochs, pursuing a goal such as the average waiting time of each

customer. The controller tries to find a policy, i.e. a sequence of decisions -e.g. which

queue to join, to accept or reject the incoming customers- to achieve its goal.

In this dissertation, we consider a problem which is the building block of many

systems, and its solution is important from a practical point of view. We develop an

exact methodology, which is better than the current methods, for solving this type of

www.manaraa.com

2

problem. This methodology is not specific to our problem; it can be used to solve many

other problems in controlled QN settings. We also compare several heuristic methods,

which can be used for very large problems. In this comparison study, we use all the

heuristic ideas that we have encountered in the literature, and also suggest another

heuristic method. The comparisons are made against the exact methodology' we develop

since it offers a very efficient way of evaluating a given policy. Moreover, we point out

a misconception in the literature regarding our type of problems.

To be more specific, we concentrate on a problem where the rates (service and arrival)

and the number of servers are fixed. The servers serve in parallel and they have their

own queues with infinite capacity in front of them. There are several arrival streams

to the system. Each queue has an arrival stream that automatically joins it. On top

of this, there is a general arrival stream. The general customers can be served by any

of the servers, and it is the job of the controller to decide which queue each general

customer should join to receive service. When making decisions the controller is trying

to minimize the average number of customers in the system per unit time. We will give

a formal and detailed description of the problem in Chapter 2.

Due to their wide applicability in manufacturing systems and computer networks

these type of QNs have recently received a lot of attention. Researchers have difficulty

in analyzing such systems because of their analytical complexity. Most of the results

indicate what the structure of the optimal policy is, which in many cases boils down

to showing that something very intuitive is in fact the optimal policy. These structural

results are only limited to very small networks (two servers). On the other hand, even

for such small systems, it is not clear how the parameters of the optimal policy should be

obtained in an efficient way. Without the parameters, the structural properties alone are

not of much help for practical purposes. Moreover, computational problems and mem­

ory limitations severely affect the size of problems that can be solved computationally.

For the problems that can be solved within the given computer memory limitations, the

www.manaraa.com

3

efBciency in solving for the optimal control parameters is very important which is what

we are focusing on in this dissertation. The larger the problem size, the more computa­

tional efficiency becomes a handicap. With our methodology that will be described in

Chapter 3 we efficiently solve larger problems than previous researchers.

1.2 Classification of Problems

The problems in the area of controlled QNs can be classified with respect to many

attributes:

1. Routing vs. scheduling: An important portion of previous work has been dedicated

to either routing problems -in which customers are allocated at the time of their

arrival- or to scheduling problems -in which customers are maintained in a single

queue and allocated to servers when they become idle. It should be noted though

that this distinction of terms is not universal. Our problem is a routing problem.

2. The amount of system information available to the controller: Complete, partial

or none. If the controller has complete information then it knows the length of

all queues, and all of the arrival and service rates at the time of an action. On

the other hand, it may have partial information or no information at all. The

research focuses on the first and third cases. We assume that all the information

is available.

3. The goal: While the individual customers are interested in optimizing their inter­

ests, the controller seeks the social optimum. Although for some systems these

two goals coincide, this is not true in general. Analytically, it is easier to find the

individual optimum, but the more interesting case is finding the social optimum.

The objective often is to minimize the discounted cost or long-run average cost.

We are interested in the long-run average cost. Often, structural properties of the

www.manaraa.com

4

optimal policies are the same for both of the cost problems. .A,lso, the optimal

policies for the long-run average cost can be derived using the results from the

solution to the former objective, the discounted cost problem. But certain condi­

tions should be satisfied for the long-run average cost to have an optimal stationary

policy (a stationary policy is one where at any time point the decision taken in a

given state remains the same).

4. Heterogeneous vs. homogeneous servers: Homogeneous servers are those that have

equal service rates. This assumption simplifies the analysis, and most of the re­

ported results are related to this case. When servers have different service rates

they are called heterogeneous. We deal with heterogeneous servers.

5. Topology: The QN may have different layouts such as parallel or tandem. Our

layout is parallel.

6. Dynamic vs. static assignment: In static assignment rules the actions do not de­

pend on the state of the system. Dynamic assignment rules give better perfor­

mance but their implementation is much more complicated. Due to their superior

performance, we are looking for dynamic assignment rules.

The problems that occur within the framework of controlled QNs are very popular

due to their applicability in many fields such as manufacturing, telecommunications, and

computer networks. This leads to a large number of publications that are published in

very different journals. In our review, we concentrate on problems where the common

characteristic is parallel layout. We would like to emphasize that the existing research

focuses on proving the structure of the optimal policy, and that this can only be done

for small networks with two servers. The literature review that follows can be skipped

during the first reading.

www.manaraa.com

5

o
o ^^2

o
Figure 1.1 A routing problem (RNDA)

1.3 Literature Review

Stidham and Weber [46] give a comprehensive survey of Markov decision models for

control of networks of queues. While we are reviewing the literature, we will focus on

QNs with parallel queues. As mentioned earlier, this can be done in two distinctive

categories, namely routing and scheduling.

1.3.1 Routing

Consider the system in Figure 1.1 which will be denoted as routing with no dedicated

arrivals (RNDA). Customers arrive to the system according to a Poisson process with

rate A. At the time of their arrival a controller routes them to a queue, queue k, served

by an exponential server with rate //jt. Also we assume that the servers are numbered

in decreasing order of server speed. Once routed, a customer stays in that queue until

it finishes service. We also assume that the service discipline is FIFO (first-in-first-out).

The exponentiality is widely assumed in the literature. If more general distributions are

used this will be indicated.

Winston [58], Weber [54] and Ephremides et al. [10] showed that if the system

consists of identical iV//M/l queues in which the queue lengths are known at any time.

www.manaraa.com

6

then the expected discounted cost is minimized by the shortest queue policy, i.e. by

a policy that routes the customers to the shortest queue at their arrivals. .Johri [23]

extends the domain of optimality of the shortest queue policy to state-dependent service

rate case. Hordijk and Koole [17], and Towsley et al. [52] consider finite buffer queues

with more general arrival processes, and once again optimality of shortest queue policy

is proved. Xu et at. [62] considered a routing problem where there are two classes

of customers to be served by two stations, with parallel servers in each station. The

servers are homogeneous. Class-1 customers can be served only by station 1 whereas

class-2 customers are free to choose a station. It is shown that to minimize the long-run

average cost a class-j customer, whenever possible, should be assigned to an idle server

in station j. and a class-2 customer should be assigned to an idle server in station 1

only if (no class-1 customers are waiting, and) the length of queue 2 exceeds a critical

number.

As opposed to the above cases where the controller can observe the queue lengths,

there are applications where this information is not available. Ephremides et al. [10]

proved for two queues that the round-robin policy is optimal when the controller has

access to only the past routing decisions and the service times are exponentially dis­

tributed with the same rate. The round-robin policy sends customers one by one to

different servers until all of the servers are used, and continues sending the customers

to the servers in the same order. Since the servers are equally fast the order is not im­

portant, and by keeping the same order in each cycle the times between arrivals to any

server are balanced. Stoyan [48] showed that the round-robin policy gives stochastically

smaller waiting times than the Bernoulli policy with equal routing probabilities to each

queue. This particular Bernoulli routing policy has been shown to be optimal among

all the Bernoulli policies [6]. Recently, Liu and Towsley [.30] extended the optimality of

round-robin policy to service times with an increasing failure rate distribution.

In the case of heterogeneous servers, the structure of the optimal policy is only known

www.manaraa.com

7

for the two-queue case. Hajek [12] proved that if the system has two heterogeneous

MfMfl queues, then a switch-over policy minimizes the discounted (or average) cost

with linear holding cost. A switch-over policy can be formally described as: If ar,- denotes

the queue length at queue i, then there exists an increasing function F{xi) such that

an arriving customer is routed to server 2 if X2 < F{xi). Xu and Chen [60] recently

showed that with the discounted cost criterion the optimal switching curve has a finite

asymptotic limit when Ci ^ C2, where c,- is the unit holding cost per unit time at station

i. They also show that there is no finite asymptote in case of long-run average cost. Xu

and Zhao [63] allow jockeying, i.e. the controller can change its routing decision and send

some customers to the other queue after they have joined one queue, between the two

queues and characterize the structure of the dynamic routing and jockeying policies that

minimize the expected total cost, for both discounted and long-run average cost criteria.

VVhitt [57] gives examples in which the shortest expected delay policy is not optimal.

There are several examples; with multiple exponential servers, under general service

times, and also in the ca^e where only the number of customers in the queues are known.

Houck [19] uses a simulation study showing that the shortest expected delay policy

performs nearly optimally when there are two stations with parallel, identical servers,

where each station has a single queue. Banawan and Zahorjan [2] did a numerical study

showing that in RNDA the individually optimal policy is actually the optimal decision in

most of the states. The optimal strategies were obtained using policy iteration. Rosberg

and Kermani [37] compared an overflow routing heuristic against a lower bound. For

high traffic intensities their method moves away from the lower bound. The problem in

Houck's paper with heterogeneous servers was solved by Krishnan [24] using a one-step

policy improvement algorithm starting with a Bernoulli-splitting policy. This heuristic

method performs better than the shortest queue policy. Later, Shenker and VVeinrib [42]

give cases where the shortest queue policy does not perform very well. They also use

simulation to compare several heuristic policies. Hlynka tl al. [15] talk about a case with

www.manaraa.com

8

two queues where a single smart customer can observe the queues before joining and only

after some arrivals or service departures have occurred he enters a queue. They show

that this single customer can lower its expected sojourn time by using the information

gained before entering the queue rather than joining the shortest queue immediately.

In case of heterogeneous servers, when the queue length information is not available,

there also exists considerable amoimt of research to find the best sequence for routing

customers to the queues. Hajek [13] gives the optimal sequence for two queues given that

fraction p of the customers should be sent to the first queue. For more than two queues

the optimal sequence is not known, but many good sequences have been obtained. The

sequences given in Yum [64], and Itai and Rosberg [22] are some of them. Arian and Levy

[1] give a sequence based on Hajek's optimal two-queue sequence which outperforms the

previous sequences. Combe and Boxma [7] obtained another sequence based on Hajek's

sequence but they don't include a numerical study showing how good their sequence is.

Hordijk et al. [18] give a close-to-optimal sequence. Their numerical studies show that

both their sequence and Combe and Boxma's sequence indeed perform very well, and

the period of their sequence is smaller. Combe and Boxma discuss general properties

and optimization aspects for probabilistic assignment, and for a policy that follows a

fixed pattern which may have been generated by any of the above-mentioned sources.

1.3.2 Scheduling

By allowing the servers in an M f M / n system to be heterogeneous we arrive at the

system in Figure 1.2. In this system, the controller chooses between utilizing a server

or not when a server becomes idle, or when an arrival occurs. In certain situations, it

may be advantageous to wait for a faster server to become idle instead of immediately

joining an idle slow server.

Larsen and Agrawala [26] conjectured that with two servers an arbitrary customer's

mean sojourn time is minimized by threshold policy. A threshold policy is one in which

www.manaraa.com

9

O"'

- • M M i l l e d Q "

Figure 1.2 A scheduling problem

the slow server is put into service when the queue grows sufficiently large. Lin and

Kumar [28] and VValrand [53] proved this conjecture. Lin and Kumar also give a closed-

form solution to compute the cost for a given threshold. Kumar and VValrand [25]

find the individually optimal policy with any number of servers. Shenker and VVeinrib

[42] evaluate some heuristic policies using simulation. Sobel [44] proves that routing the

customers to the fastest available server is the optimal policy that minimizes throughput

when there is no waiting room. This result cannot be extended to non-exponential service

rates as shown by a counterexample with two servers in Seth [41]. Xu and Shanthikumar

[61] impose an admission control on this system, rather than a scheduling control, and

show that when the number in the system reaches a threshold, the incoming customers

will be rejected to maximize the expected discounted or long-run average profit. In

another related paper, Xu [59] applies both admission and scheduling controls. These

two papers do not use dynamic programming techniques, but instead define a dual

problem and explore the problem from an individual's point of view whose behaviour

is the socially optimal policy for the primal. This approach allowed Xu to derive an

approximation for the threshold in the two-server scheduling problem. Rosberg and

Makowski [38] show that for the case with multiple servers, and with small arrival rates,

the optimal policy is from the class of optimal policies that minimize the expected flow

www.manaraa.com

10

time for a system with fixed population and no new arrivals. With no new arrivals the

optimal policy is known to be of threshold type.

1.4 Organization

In Chapter 2 we formally introduce the problem we have worked on. We also give

several formulations for the problem. In Chapter 3 we discuss our methodology. W^e

give related computational results in Chapter 4. Chapter -5 consists of several heuristic

methods that are useful for very large problems. We summarize, and suggest some

further research in Chapter 6. Appendix A is a formal discussion of MDP techniques.

Appendix B discusses a resource allocation problem from our research.

www.manaraa.com

11

CHAPTER 2 ROUTING WITH DEDICATED ARRIVALS

In this chapter, we will first introduce a problem that will be the basis of the later

chapters. We will also discuss several formulations of the problem.

We denote our problem by RWDA (routing with dedicated arrivals), see Figure 2.1 for

an example. In this routing problem, there are several servers in parallel with possibly

different service rates. Each server has its own infinite queue. Service times at each

server are distributed exp(^,). Let m be-the number of the servers. The state of the

system at any time can be described with a vector n = (ni, n2,..., nm} vvhere n, denotes

the number of people in front of server i plus the one in service.

There can be as many as m + 1 different arrival processes to the system. For each

server i there is an arrival stream of customers that must be served at server i. These

arrivals follow a Poisson process with rate A,-, A,- > 0. Note that we allow A,- = 0. There

is also a general stream of arrivals following a Poisson(Ao) process with Aq > 0. These

arrivals may be served at any of the servers. When a general arrival occurs, it is assigned

to a queue by the controller. Jockeying is not allowed, that is once a customer has been

assigned to a queue, it cannot join another queue. The controller knows which state

the system is in at any time. We also assume that the customers are served in a FIFO

manner.

There are many goals the controller may have. In this work, we will focus on the

goal of minimizing the average number of customers in the system, L. To that end. the

controller finds a policy: A policy is a rule that for each time point and each state of

the system dictates what decision to make. The decisions in our problem are to which

www.manaraa.com

12

-^1 o
o

y-i

O'

Figure 2.1 Routing with dedicated arrivals (RWD.A.)

queue a general arrival is sent. The controller uses a stationary policy, i.e. its decisions

in a state do not change with time. It is sufficient to only consider stationary policies

to find an optimal policy, see for example [50]. For this reason, we mean a stationary

policy whenever we use the term policy from now on.

In the literature, typically, the average waiting time of a customer in the system, W.

is minimized. L and W are related to each other by the famous Little's law which says

L = XefflV, where Ae// is the effective average arrival rate to the system. The effective

average arrival rate to the system is the average rate at which the customers enter the

system. There could be a difference between the arrival rate and the effective arrival

rate if for some reason some of the customers do not enter the system. In the above

system -if no customers are lost- this average effective arrival rate is equal to the sum

of all arrival rates, that is Ag// = many cases, minimizing L is equivalent

to minimizing W by Little's law. In the literature, however, it is incorrectly stated that

minimizing W is equivalent to minimizing L. Because the formulation for minimizing IF

is much more difficult than minimizing L, to minimize W researchers usually minimize

L. However, there are systems where this equivalence does not hold. One example of

that is our system with finite buffers. We will explain this further later in this chapter.

www.manaraa.com

13

The problem we have described is a basic component of many models that arise

in routing or load balancing problems in different settings such as computer networks,

or manufacturing systems. For example, our servers may represent CPU's or printers.

While some jobs directly go to these servers, some jobs can be processed by any of them.

A controller decides to which server a new-coming general job goes.

Our problem has not been solved in the literature. A few researchers have used ded­

icated arrivals, but they have looked at different problems: Ni and Hwang [33] consider

a class of probabilistic load balancing problems, i.e. the controller randomly assigns the

general customers to the servers with some given probabilities for each server. Ni and

Hwang determine the optimal set of probabilities from among all possible probabilities

to optimize the average waiting time. They also claim to have the closed form solutions

for the optimal probabilities. Their results are incorrect, but were later corrected by

Bonomi and Kumar [4] when solving a problem that arose in another context. They de­

velop adaptive load balancing methods for a problem with the same layout as in RVVD.A.

but where the load parameters (arrival and service rates) are not known. In Appendix B

we give a simpler derivation of the above-mentioned formulae. These formulae play a

critical role in our methodology, which will be described in Chapter 3.

2.1 Semi-Mcirkov Decision Process Formulation

A common approach to modeling a problem such as the RWDA is to use a semi-

Markov decision process (SMDP).

In an SMDP model the system is observed at random points, decision epochs, and the

state of the system is determined. .A.fter this determination, an action (decision) is taken

and costs are incurred as a result of this action. These costs could be either lump sums

that incur at discrete time points or costs incurred continuously in time with some rate.

.After the action has been decided about, the system stays in that state for a random

www.manaraa.com

14

amount of time, and then makes a transition to another state with some probability

that only depends on the state now and the action that has been taken. Some other

Markovian properties are also satisfied: The time until the next decision epoch does not

depend on the past history of the system but only on the state the system is in now and

the action that is being taken. The same is true for the costs.

If we only consider the times where the controller actually makes a decision (an

arrival of a general customer) the problem by definition is not exactly an SMDP. In

between the decision epochs the system may have many state changes via dedicated

arrivals or departures. This, on the other hand, affects the cost structure.

However, it is not difficult to change the formulation so that this is a SMDP. We

model the time of every state change, an arrival or a departure as a decision epoch. With

this formulation, at any decision epoch that does not correspond to a general arrival,

the controller has only one action available, that of doing nothing. The controller is only

needed when a general arrival occurs in which case the action to be taken is to assign

the customer to one of the queues, a = 1,..., m.

There are three main techniques for solving MDPs: Policy iteration (PI), value itera­

tion (VI) and linear programming (LP). These methods can only be implemented when

the state space is finite. Our state space is {(ni, ̂ 2? • • • ? «m) : 0 < ni < oo,...,0 <

Ttm < oo} which is obviously not finite. A reasonable approach to get around this is to

solve the related finite buffer problem which has the state space {(ni, ng,..., n^) : 0 <

<^1 ^ iVi,..., 0 < Tim ^ The finite buffer problem will be referred as RWDA,^.

As mentioned above, one important difference between RWDA and RWDA,^ is that

minimizing W is no longer the same as minimizing L. Because of the finite capacity,

some customers will be rejected when the system, or some of the queues are full. This

affects Kff- The fullness of the system, on the other hand, is dictated by the policy

the controller is using. For example, on one extreme, with a policy such as "send to the

slowest server"' many customers cannot enter the system. Hence, the effective arrival rate

www.manaraa.com

15

and a policy are directly related. This, of course, means that a policy that minimizes

W does not necessarily minimize L. In our work we also examine how the value and

the solution of RWDAy^ change as iV is changed. In the literature, it is often incorrectly

stated that minimizing L is equivalent to minimizing W for problems of this type (see

for example [47]). As stated earlier, our goal is to minimize L.

Let Ti be the average holding time in state i . The average holding time of a state is

the average time until some event changes the state of the system. This can happen two

ways, either an arrival of some kind occurs, or some server finishes serving a customer.

Therefore, the holding time in a state is an exponential random variable with average

holding time

T = i • m m '

t=I 1=1
n, >0

When the system is full, nothing but departures can occur.

When the system is in state i, it incurs a cost at the rate of the number in the system

at that state. On average, each visit to a state will have a cost that can be found by

multiplying the total number of people in state i by the expected time you spend in

state i, Ti. We denote this average cost in state i by c,-.

The probabilities for state changes are straightforward to find. Let n,+ = {ni,..., n,H-

l,...,n^}, and n,-_ = {ni,...,n, - Then,

Pn,rl,+ (o) —

^ r f i a ^ Z , U i < N i

Ao+ ^ A,+ ^ /X,

ist 1=1
ni<iVj n,>0

m m ^ /t, ^ iv,
Ao+ ^

i=l t=l
n, <Ni n, >0

Pn,n,_(fl) — m m n,' > 0.

tsl t=l
ni<JVi n,>0

www.manaraa.com

16

In the above equations the numerator is the rate at which a particular event happens. It

is well known that the minimum of exponential random variables is another exponential

random variable. This new exponential random variable's rate is the sum of all rates.

Therefore, the denominator gives the rate at which an event (any) happens in a state.

A very important characteristic of this problem is that the possible number of state

changes at any state is not that many. There are + 1) total states, but from

any state there are at most 2 * m states which are possible to go to. Either m types of

arrivals, or m departures can occur. For some states, the number of choices are even

more limited. This feature will be very useful when designing a methodology which we

will discuss in Chapter 3.

2.2 Other Formulations

Our methodology, which is a modification of PI, uses the above formulation. When

using the other methods, different formulations must be used.

2.2.1 Value iteration formulation

The VI algorithm requires a discrete-time MDP (DMDP) in which the times between

the events are fixed. However, in the previous formulation this does not hold true jis

the decision epochs are separated from each other by transition times which do not

have identical rates. In some states, not all the events are possible, e.g. there can

be no departure from an empty system. To make the transition rates the same, we

allow transitions from a state to itself, and let the transition times have the same rate.

Thus, the SMDP model can be converted to a DMDP model by the following data

transformation ([40]).

www.manaraa.com

17

The actions and the states stay the same. Let

-^0 +
1=1 1=1

Then, the new costs = c,/2}. and the new probabilities are found by

' , . Y I P I J I ^) J ^ ̂
P i j i a) = < ' ,

f ; P i j{ a) + (l - i) j = i .

The new formulation has the same class of stationary policies as the original model

(see [50]). Also, the average costs per unit time are the same for each stationary policy

in both models.

In this formulation, the expected time until the next decision epoch is

1
m m

1=1 t=l

For the implementation of the VI algorithm refer to .A.ppendix A.

2.2.2 Linear programming formulation

Here we will give a general LP formulation. In .Appendix A. we discuss another

LP formulation (in fact, both formulations are duals of each other). This one is useful

because it gives the steady state probabilities for when the system is in state i and action

a, a = 1,..., m, is made. The actions are again sending the customers to a queue. Let

Ui(a) = Xi{a)/Ti{a) where x,(a) is the long-run fraction of decision epochs at which the

system is in state i and action a is taken. S denotes the set of all states. Note that the

state space is larger than the state space we have defined for use in our methodology. It

can be described with a vector {(nt, ̂ 21 • • •, "m, a) : 0 < rzi < iVj,..., 0 < 1 <

a < m } . ^4(2) stands for the set of actions when one is in state i .

www.manaraa.com

IS

Minimize

S E Ci{a)Uia
ieS ae.4(:)

subject to

" i « " U S P i j i ^ y ^ i a = 0 , i € / ,
a6.4(j) i65 ae.4(i)

Z XI "'•» =
i€5 a6>l(j")

Uia > 0 Vi,Va.

The objective function is to minimize the long-run average cost per unit time. The first

set of constraints is similar to the balance equations while the last constraint requires

the fractions u,a to add up to 1.

www.manaraa.com

19

CHAPTER 3 A NEW METHODOLOGY

We have introduced a routing problem with dedicated arrivals in Chapter 2. In

this chapter, we give a methodology which is at least as good and in most cases better

than the current techniques for solving this type of problem. For a detailed description

and comparison of standard techniques please refer to Appendix A. Both standard

policy iteration and LP involve simultaneously solving a system of linear equations at

each iteration -note that iterations for PI are different than those for LP- which is

computationally burdensome. In general, VI is considered the best method to use for

large systems because it avoids solving a system of linear equations. We overcome the

shortcomings of the standard PI with several changes to the algorithm. Our methodology

makes three major changes to the standard Pl-method:

1. It uses iterative methods in solving the system of linear equations.

2. It takes advantage of the sparsity in our problem. It also allocates the state space

cleverly.

3. It finds an easy-to-compute initial solution.

We use our methodology to solve the RWDA problem, but this technique can be

used to solve many other controlled QN problems and SMDPs in general.

www.manaraa.com

20

3.1 The Standard Pl-algorithm

In order to discuss our methodology' we must first describe PI in more detail: PI

begins with an initial policy, which can be any policy. This policy is evaluated, and

then based on the evaluation an improved policy is developed. These evaluation and

improvement steps are then iterated until an optimal policy is reached. It is well known

[50] that this procedure will reach an optimum in a finite number of iterations. The

evaluation step consists of calculating what are known as relative values, Vi{R), for a

given policy R. The relative values give a relative measure of the effect of starting at

s t a t e i o n t h e t o t a l e x p e c t e d c o s t s u s i n g t h e p o l i c y R . T h e d i f f e r e n c e , V j { R) — V i { R) .

has an economic interpretation: It represents the difference in total expected costs over

an infinitely long period of time by starting in state i rather than in j when using the

p o l i c y R .

Let g { R) be the average cost (in our problem L) for a given policy R . I denotes the

s e t o f a l l p o s s i b l e s t a t e s , a n d . 4 (i) s t a n d s f o r t h e a c t i o n s e t a v a i l a b l e i n s t a t e i . R { i)

denotes the action at state i with policy R. Now, the standard PI algorithm can be

given using the notation from Chapter 2 as follows:

1. (initialization) Choose a stationary policy R .

2 . (value-determination step) To compute the average cost g { R) , and the relative

values u,•(/?), i € /, for the current rule R, solve the following system of linear

equations for its unique minimum:

V i i R) = C i - g{ R) T i + Y ^ P i j{ R i i)) v j i R) , i 6 /, (3.1)
j e r

Vr{R)=0, (3.2)

where r is arbitrarily chosen.

www.manaraa.com

21

3. (policy-improvement step) For each state i determine an action a, that gives the

minimum in

The improved policy is the one which applies the actions that yield the minimum

in the above equation for each state.

4. (convergence test) If the new policy is the same as the old one, stop. Otherwise

replace the old policy with the new one, and go to the value-determination step.

The bottleneck of this algorithm is the value-determination step where for a given

policy a system of linear equations has to be solved for the relative values and the

average cost. Assuming that the queue capacities are all iV, the number of equations

and unknowns is equal to (iV -|- 1)'" + 1. There are two problems that make this step

computationally burdensome: Traditional techniques like Gaussian elimination to solve

for systems of linear equations are not time-efficient. Moreover, with our problem the

storage requirements grow very quickly. Thus, the memory limitations severely affect the

size of the problems that can be solved using traditional methods. Based on these facts,

many researchers use VI since it does not involve solving a system of linear equations.

Our methodology is a new approach to perform PI which drastically reduces the amount

of work done in the value-determination step.

3.2 Calculation of Relative Values

In this section we will discuss the value-iteration step in more detail, and show how

the computation of the relative values can be improved.

In the value-determination step, the linear equation for state i can be rearranged as

mm
a€.4(i)

- V { { R) - g { R) T i + ' ^ P i j i R { i)) v j { R) = -c.-, (3.3)

www.manaraa.com

22

Vr{R) = 0. (3.4)

The total size of the system is

m 2

n i ' v . + 1) + 1
Li=l

where + 1) is the total number of relative values (one for each state). We also

need to compute the average number in the system. As mentioned earlier, one of the

relative values is arbitrarily set to zero.

Letting x be the unknowns of the system, that is the relative values - v { R) - and

the average cost g{R) {= L of a. given policy /?), we can write the above system of

equations as Ax = 6 in matrix-vector form where the entries of .4 are the corresponding

coefficients of v{R) and g{R). Using this notation, PI results in a sequence of matrices

.4o, .4i,..., .4/ and a sequence vectors xq^xi^ ... ,xj satisfying

The main work in PI is calculating the sequence xq, xi,..., x/. The policy Rk+\ is

determined from the policy Rk and the vector xjt. .4^+1 is then determined from Rk+i-

This suggests that the vectors xo,xi,...,x/ are closely related to each other, which

happens to be the case. Our approach is to take advantage of this information.

If one uses Gaussian elimination, the above-mentioned observation does not bring

any gain because in Gaussian elimination every system has to be solved independently of

each other. We use the so called iterative methods to take advantage of this observation.

Next, we will discuss briefly how to solve a system of linear equations, and how we

take advantage of the way iterative methods work.

3.2.1 Solving a system of linear equations

Perhaps the best known method for solving linear systems is Gaussian elimination

(with partial pivoting). This is a direct method which is very robust, but very time-

A k X k = b . (3.5)

www.manaraa.com

23

inefficient in solving large systems. In fact, to solve n equations simultaneously, one

needs computation time in the order of n^. It also requires a lot of memory, and even

for small systems in our problem it will perform poorly. This Weis also an obstacle in

the work of other researchers.

Another class of methods is iterative methods. These methods repeatedly improve

an approximate solution until it is accurate enough. Suppose you want to solve the

system Ax = b which has the unique solution x'. Iterative methods involve finding a

sequence ^o, Ci,..., 2/ with —>• x'. The user only needs to supply a routine that will

compute a vector y given the approximate solution zi by using y = Azi. If y is close

enough to b then the algorithm is terminated.

Thus, the way the iterative methods work allows us to use the observation we made

about the dependence of relative values in consecutive iterations of PI. Once, an iteration

k of PI has been completed we have a solution, Xk, for the system of linear equations.

AkXk = b. In iteration A; + I of PI, we want to find Xk+i which is close to Xk- Therefore,

we can apply the iterative method in {k + l)th value-determination step starting with

X/-.

There are different types of iterative methods. Stationary methods are older but they

are not as effective as non-stationary methods. An iterative method can be expressed as

^/+i = Bizi 4- hi,

where Bi and hi are determined depending on what method one is using. In the sta­

tionary methods there are no changes to Bi and hi from one step to another. Jacobi.

and Gauss-Seidel methods are probably the best known stationary methods. The nice

thing about the stationary methods is that they are easy to implement. Unfortunately,

they did not converge for many instances of our problem. The non-stationary iterative

methods, on the other hand, use the information such as residuals that is obtained at

each iteration to compute constants for the next step. We are not going to overview

www.manaraa.com

24

all these methods in detail. For more information we refer the reader to Barrett et al.

[3], and Hackbusch [11]. Only recently, Stewart published a book [45] that discusses

the use of these iterative methods in the numerical solution of Markov chains. It is also

important to incorporate the iterative methods into the PI algorithm.

3.3 Sparsity and State Space Allocation

The previous discussions motivate the use of iterative methods in the PI algorithm.

The limitation of computer memory poses another obstacle in solving a system of linear

equations. The number of states grow very quickly (hence the transition matrices for our

linear systems) with the number of queues and queue capacities. Table 3.1 illustrates

how the number of states grows for our problem.

Table 3.1 The number of states for the routing problem

^ queues (30 each) # states Queue capacity # states (3 queues)
2 961 30 29,791
5 28,629,151 60 226,981
10 w S * 10" 100 1,030.301

Now consider a two-queue case. From any state there are at most four transitions

possible. An arrival can be assigned to either of the queues, or a departure can occur from

any of the queues. When the number of queues increases, it is clear that the percentage

of the actual transitions to the whole state-transition matrix becomes smaller. In PI,

the equations (Howard equations) that need to be solved are of the form

- V i [R) - g { R) T i + = - Cm i 6 / .
J e i

One of the relative values is chosen arbitrarily and set to zero. For each row in the .4

matrix, there are at most 2 * m + 1 nonzero entries out of ni^i(^^i + 1) + 1 total entries.

Therefore, out of (ni^i(-^i + 1) + 1)^ entries, at most (2 * m + l)(ni^i(-'^i + 1) + 1) are

nonzero.

www.manaraa.com

25

With two queues, and queue capacities of 30, in every row there are at most 5

nonzero entries out of 962 entries. That corresponds to a density of at most 0.5%. If

queue capacities are increased to 100, the density drops to at most 0.05%.

In general, if a matrix has a density which is less than 2 or 3% sparse it is considered

good. Sparse techniques tremendously reduce the amount of storage and the amount of

computational work. This seems to be ignored in the literature. For a general SMDP.

PI is not practical. However, for controlled queues, by using sparse techniques it is.

Some researchers set the queue capacities to the same number (see for example [24].

When the service rates are different, the queues are not expected to be equally full with

the optimal policy. Hence, some states that are allowed using equal queue capacities

are visited with a very small probability. A more reasonable approach is to give the

faster servers more waiting room because they are expected to be utilized more often

than the slower ones. There is no rigorous way of finding the buffer capacities. However,

allocating them proportional to the service rates helped in improving the efficiency of

our algorithm quite significantly.

3.4 Initial Solution

In general, PI picks an initial policy and calculates the relative values for it. There­

fore, the initial values, xq, are calculated from scratch as opposed to Xi,..., j/. We get

around this by picking an initial policy in which we already know what the solution vec­

tor is. Our initial solution vector comes from a Bernoulli-splitting policy which we will

discuss in this section. The relative values and L for Bernoulli-splitting can be obtained

very easily.

The Bernoulli-splitting policy splits the incoming arrival stream among the queues

with probabilities, based on the arrival and service rates. After that, the

queues behave as independent M/M/1 queues because addition (or splitting) a Pois-

www.manaraa.com

26

son arrival creates yet another Poisson arrival. The optimal splitting probabilities are

the subject of Appendix B. Figure 3.1 will make the idea of Bernoulli-splitting clear.

The general axrival stream is split into m separate Poisson arrival streams with rates

PiXq, ... The overall arrival to queue i is another Poisson process with rate

+ Pi^O-

P i ^ o

P 2 X 0

o
o

/^1

Pm O'

Figure 3.1 Bernoulli-splitting

An M/M/1 queueing process can be looked at as a very straightforward SMDP with

two possible decisions at each decision epoch, namely join the queue (if arrival) or do

nothing (if departure). Once we have the relative values for the single queues, the

relative values for the Bernoulli-splitting process can be found by adding them up using

the appropriate probabilities.

Lemma 3.1 For an M/M/1, the relative values can be expressed as

n { n + 1)
Vn = -W,

with i;o = 0 and W = l/(/z — A) where A and p, are the corresponding arrival and service

rates for the M/M/1 queue.

Proof. With a single queue there are two events possible, an arrival or a service

completion. An arrival takes the state n to state n 4- 1, while a departure changes n to

www.manaraa.com

27

n — 1. The Howard equations become

n L \ f j .
= "r~~~ T~~ h Y~j ^n+l + T~~~ '^n-l-

A fj, X n X fjL A-f-//

L for an M/M/1 queue is found by A/(/x — A). The lemma follows by substitution. •

L for Bernoulli-splitting can be expressed as

^ Pt Ao + A,"

PiAq A,'

which is the sum of M/M/1 formulae for L.

Now, we have a policy (Bernoulli-splitting) and an easy way to evaluate that policy.

By applying a policy-improvement step -which does not pose an important computa­

tional burden- we can obtain a better policy. In the policy-improvement step the basic

idea is to minimize for each state n the difference in total expected costs over an infinite

time horizon. This is accomplished by taking a different first action, a, than what the

Bernoulli-splitting policy, Rb, dictates. After the first action Bernoulli-splitting is used.

D e n o t e t h i s d i f f e r e n c e (J (n , a , R B) , a n d t h e p r o b a b i l i t y o f s e n d i n g a c u s t o m e r t o q u e u e j

w i t h t h e B e r n o u l l i - s p l i t t i n g p o l i c y p j . T h e n f o r e a c h s t a t e n a n d a c t i o n a = k

m

S { n , a , R B) = YLpA^kirik) ~ D j i n j)] +p k * 0
j=i
J ^ k

= -flPjDjirij) + Dkirik),
i=i

where D j { n j) is the difference in total expected costs over an infinite time period by start­

ing with rzj + I customers in queue rather than with nj customers. The summation term

in the final equation does not depend on the action a. Hence, the policy-improvement

step of PI is only

min Dk{nk).
k — l m

The difference Dk{nk) for each queue k is the difference between the relative val­

ues, Urifc+i and Vni^. As can be seen by the above expression for 5{n,a,Ro), we don't

www.manaraa.com

28

need to find the relative values for the Bernoulli-splitting policy to perform the policy-

improvement step. Looking at the impact of a new arrival on individual queues sepa­

rately suffices.

At this point we will give the algorithm we propose, and later we will discuss some

other important issues related to the algorithm.

Let Xki be the approximate solution vector to Equations 3.5 at the kth iteration of

PI, and Ith iteration of the iterative method. Furthermore, let Xki = {vki{Rk), gici{Rk)},

where Vki{Rk) is the relative value vector in iteration k of PI, and iteration I of the

iterative method for a given policy Rk- gki{Rk) is the respective average cost (average

number in the system). We will also let Vki{i, Rk) denote the entry of the relative value

vector for state i. Xkf stands for the final solution vector in the kth iteration of PI.

1. (initialization) Choose a stationary policy Rq using a one-step policy-improvement

over Bernoulli-splitting policy. Set uoo(Ho) = y(Bernoulli), gooiRo) = Z^(Bernoulli),

and k = 0.

2. (value-determination step) To compute the average cost gkf{Rk)i and the relative

values Vkf{Rk) for the current rule Rk, solve Equations 3.5 using a non-stationary

iterative method.

3. (policy-improvement step) For each state i determine an action a,- that gives the

minimum in

The improved policy, Rk+i, is the one which applies the actions that yield the

minimum in the above equation for each state.

3.5 The Algorithm

mm
ae.4(i)

www.manaraa.com

29

4. (convergence test) If Rk+i is the same as Rk, stop. Otherwise, find At+i by only

changing Ak for the rows where Rk+i is different than Rk- Let Rk = Rk+i, k =

k+l, and go to the second step.

3.5.1 Other computational issues

Now we will discuss some aspects of the algorithm we also deem important:

• Since the policies in PFs consecutive iterations are not that much different, it is

possible to increase the speed of the algorithm by not writing the coefficient matri.x

from scratch during each value-determination step. Instead, the matri.x is updated

during the convergence test step when the old policy is compared to the new one

to check convergence.

• .A. closer look at the policy-improvement step will also bring some improvement.

Since the costs c,- and the average holding times T",- are not dependent on the action

taken the equation can be written differently,

where pij{n,Rk) is the rate at which a transition from state i to j occurs under

policy Rk- Then, the comparison reduces to

• We mentioned to use a non-stationary iterative method to solve the linear system.

That is because stationary methods such as Jacobi, Gauss-Seidel may not converge

for our problems. It is well known that if the system is strictly diagonally dominant

then the Jacobi and Gauss-Seidel methods converge for any starting value. .A.

system of equations in which the coefficients satisfy

mm
ag.4(i)

mm
a6.4(i)

www.manaraa.com

30

is said to be strictly diagonally dominant. Our equations,

-Vkiii, Rk) - gki{Rk)Ti + Rk) = -c,,
jei

never satisfy this condition. This can be seen easily by recognizing that the abso­

lute value of the diagonal element is 1, and since the sum of probabilities is equal to

1 as well, this condition is never satisfied. This does not mean that the stationary

methods will not converge, but our numerical e.xperience has shown that for our

type of problems, stationary methods do not always converge.

3.6 Evaluation of a Policy

Often, one is interested in how a particular policy will perform against the others.

VI and LP cannot be used to evaluate a policy. Both of these methods yield an optimal

policy only when they are finished. Our methodology and traditional PI, on the other

hand, evaluate a policy at each value-determination step. Therefore, they are useful to

evaluate a given policy which is a major advantage of this approach.

Of course, once a policy is given the underlying process can also be analyzed as a

continuous-time Markov chain which can be solved for its stationary distribution. Once

the stationary distribution is obtained, the average number in the system can easily be

found. Resnick [36] gives a numerical way of solving for the stationary probability vector

r f :

r 7 ' = (I , . . . , l) (A + O i V £) - ' ,

where .4 is the generator matrix of the continuous-time Markov chain, and O N E is a

matrix with all of its entries equal to I. Once we have the stationary probability vector,

we can compute the average number in the system which we are interested in. With

our Pl-based methodology the stationary distribution is not found. However, we have

already seen that it can be used to find the average number in the system very efficiently.

www.manaraa.com

31

On the other hand, the sparsity of the systems is lost by using the above formula to find

the stationary distribution vector. Hence, it is not an efficient way of finding L for the

size of problems we are solving.

Simulation is also an option to evaluate a policy. In this work, however, we focus on

exact methods.

www.manaraa.com

CHAPTER 4 COMPUTATIONAL RESULTS

We have written our programs in C/C++. All the programs were run on DEC

Alpha workstations (100 MHz, 32 MB RAM). The public software LASPack [43] has

been incorporated into our programs to solve the systems of linear equations. Our

iterative method of choice was the biconjugate gradient stabilized method. We also

needed to precondition our linear systems so that they had nicer convergence properties.

A preconditioner is a matrix that transforms a linear system into one that has the same

solution and nicer properties. To our luck, the so called symmetric successive over-

relaxation preconditioner which does not require much extra work was enough in our

experiments.

In the tables the optimal results correspond to the average number of customers in

the system, L. p is the traffic intensity which is the ratio of the total arrival rate to the

total service rate.

Some researchers worked on RNDA where there are no dedicated arrivals. We sum­

marize their results to show the size of problems that could be solved previously. Kr-

ishnan [24] has developed a heuristic method for the RNDA problem, and compared it

to the almost-optimal solution which he has obtained using PI. He could only report

results on two-queue cases, and those only for cases where the capacity on each queue is

30. That corresponds to 961 states. Banavvan and Zahorjan [2] also used PI to evaluate

a heuristic rule. Their results were limited to about 1000-1500 states which they claim

is a "reasonable limit". As opposed to Krishnan, they solved problems with up to four

queues but they could only allow at most 10 people in the system! With a high traffic

www.manaraa.com

33

intensity their system will be full very frequently, and is not a good approximation to

the actual uncapacitated system.

Table 4.1 demonstrates how the size could affect the quality of the solution. As a

rule of thumb the quality of the solution values is indicated by a larger number since

it reflects the true value of the uncapacitated system better. This, however, may not

be true in all the cases. For example, when one queue is full the arrivals are sent to

the other queue. On the other hand, with an uncapacitated system the optimal policy

could have called for sending those customers to the queue that became full in the finite

capacity problem. Nevertheless, in most of the cases the rule, ''the larger the value the

better", applies, and we will use this in our discussions.

In all of the ca^es in Table 4.1, there is quite a significant difference between the

solutions when the queue capacities are increased from 30 to 50 and 75. Compared to

the values with 30, solutions for 50 increase more than 30%, whereas with 75 more than

70%. These increases are expected: When the system capacity is comparatively small,

more arrivals are rejected. That causes the average number in the system to be smaller

for smaller systems. As the capacity is increased, more customers can enter the system,

and L increases. The differences will not be this dramatic with lower traffic intensities.

However, the high traffic intensity cases are the more interesting ones to look at for

practical purposes.

Table 4.1 The effect of queue capacities on L. p = 0.98, RNDA

/zi = 2 m = 2.5 = 5

Capacities ^^2 = 1 A/2 = 1 = 1

10 9.7617 9.7798 10.0664
30 24.5074 24.4970 24.5036
50 34.6273 34.6151 34.5974
75 42.2980 42.2843 42.2641

100 46.3250 46.3105 46.2891
150 49.2003 49.1849 49.1632
200 49.7771 49.7617 49.7404

www.manaraa.com

34

We mentioned that Krishnan set both queue capacities to 30. We compared how the

solution values change with different queue capacity combinations. The comparisons

were made against keeping the queue capacities the same. The other queue capacities

give about 10, 20 or 30 % decreases in the state space compared to the equal-capacity

cases. We also tried to keep the queue ratios proportional to the service ratios. As one

can see from the Tables 4.2- 4.4 the quality of the solutions are better even with 10%

decrease in the state space. As the first server becomes faster, even a larger reduction

in the state space brings about better solutions. This is because the fcister server will be

utilized more the faster it is, and therefore, it needs more buflfer. One exception to our

approximate rule can be seen from Table 4.4 and (29,2) case. When the second queue

is full (which must happen pretty often with a queue capacity of 2), the customers are

forced to join the first queue. The first queue cannot handle all the incoming traffic which

increases the average number in the system. Then, the solution value of (29,2)-system

is a poorer indicator than the values of other buffer allocations, e.g. (26,3).

Table 4.2 The effects of allocating the state space on L. p = 0.98,
Hi = 2, /U2 = 1, RND.'^. Numbers in brackets give the capaci­
ties of queues

Approximate percent reduction in state space
Base case 10% 20% 30%
(10,10) 9.7617

(30,.30) 24.5074
(50,50) 34.6273
(75,75) 42.2980

(100,100) 46.3250
(L50,150) 49.2003
(200,200) 49.7771

(13,7) 9.7462
(40,20) 24.5074
(66,34) 34.6273

(100,50) 42.2981
(134,67) 46.3803

(202,101) 49.2354
(268,1.34) 49.7816

(12,6) 8.8708
(38,19) 23.5724
(62,31) 33.1493
(94,17) 41.2413

(126,63) 45.6618
(190,95) 48.9994

(254,127) 49.7282

(11,6) 8.4277
(36,17) 22.2844
(59,21) .32.0220
(89,44) 40.1949

(118,59) 44.8103
(177,89) 48.6637

(2.36,118) 49.6235

The changes we made in the Pl-method speeds it up very dramatically. It becomes

even a better alternative than Vl-method. Table 4.5 shows the gain in run-time in PI

by using the iterative methods instead of the direct methods. Table 4.6 compares the

CPU seconds for the algorithms. Observe that as the traffic intensity becomes higher

www.manaraa.com

35

Table 4.3 The effects of allocating the state space on L. p = 0.98.
Hi = 5, IJ.2 = 1, RNDA. Numbers in brackets give the capaci­
ties of queues

Approximate percent reduction in state space
Base case 10% 20% 30%

(10,10) 10.0664
(30,30) 24.5036
(50,50) 34.5974
(75,75) 42.2641

(100,100) 46.2891
(150,150) 49.1632
(200,200) 49.7404

(20,4) 11.4306
(64,12) 29.0314

(105,21) 39.1572
(160,31) 45.7546
(210,42) 48.3063
(320,64) 49.6995
(425,85) 49.8464

(19,4) 11.0081
(60,12) 27.9603

(100,20) 38.2252
(150,30) 45.0015
(200,40) 47.9706
(300,60) 49.6139
(400,80) 49.8338

(16,4) 9.7204
(.55.11) 26.2711
(95,18) 37.0499

(140,28) 44.0373
(185,37) 47.3358
(280,56) 49.4847
(375.75) 49.8129

Table 4.4 The effects of allocating the state space on L. p = 0.98.
= 10, fj.2 = 1, RNDA. Numbers in brackets give the capac­

ities of queues

Approximate percent reduction in state space
Base case 10% 20% 30%

(10,10) 10.9305
(30,30) 24.8745
(50,50) 34.6464
(75,75) 42.2406

(100,100) 46.2574
(150,150) 49.1295
(200,200) 49.7056

(26,3) 13.4667
(90,9) .34.3652

(150,15) 43.7395
(220,22) 47.9978
(300,30) 49.4096
(450,45) 49.8066
(600,60) 49.8279

(23,3) 12.2.396
(80,8) 31.9658

(140,14) 42.6649
(210,21) 47.6418
(280,28) 49.2182
(420,42) 49.7882
(560,56) 49.8263

(29,2) 14.2905
(75,8) 30.7775

(130,13) 41.4231
(200,20) 47.2215
(260,26) 48.9432
(390,39) 49.7552
(530,53) 49.8251

Table 4.5 PI with direct vs. iterative methods in CPU seconds. RND.A.,
fii = 2, fi2 = 1, N = 25

p Pl-direct Pl-iterative
02 6871 LS
0.4 455.4 2.8
0.6 910.6 3.7
0.8 910.1 4.2
0.9 910.1 4.6

www.manaraa.com

36

Table 4.6 Modified PI vs. VI in CPU seconds. RND.A., fii = 2, /X2 = 1, N
= 100 for p < 0.9, iV = 200 otherwise

p MPI VI-relaxation VI plain
0.10 74.2 105.6 121.1
0.15 .32.9 107.5 120.6
0.20 27.4 107.7 125.4
0.25 .39.2 95.5 130.2
0.30 62.7 98.1 135.3
0..35 88.2 95.1 140.5
0.40 118.1 106.7 148.5
0.45 112.3 116.5 172.0
0.50 134.0 206.2 202.7
0.55 194.1 242.0 241.6
0.60 203.9 265.6 292.1
0.65 .352.5 513.7 360.7
0.70 302.4 467.4 468.3
0.75 356.0 506.1 606.3
0.80 257.8 457.6 849.2
0.85 47.3.1 553.0 1310.4
0.90 7786.1 7378.2 13951.4
0.92 4570.1 12176.0 19024.7
0.95 5331.8 25882.9 36623.7
0.98 38526.3 37378.8 96271.5

www.manaraa.com

37

the performance of PI does not worsen eis badly as VPs. This is an important point

because at low intensities finding a solution to the problem does not pose a difficulty.

One can use any heuristic policy for low intensities, and because the next arrival will not

arrive very soon it is very likely that customers in service will leave the system before

then. Although VI with relaxation may sometimes perform better than our modified

PI, in most cases our methodology also beats VI with relaxation. The convergence of VI

with relaxation is theoretically not guaranteed. We actually had some problems which

did not converge. Moreover, the extra work to find the relaxation factor and update the

states may make the VI with relaxation slower than even the plain VI if the number of

states is sufficiently large.

The run-time of the modified PI is directly related to the total number of iterations

to solve the systems of linear equations until PI converges. Due to the fact that some

problems are harder than some others to solve numerically the run-time does not increase

with the increasing traffic intensity. Table 4.7 illustrates these points.

A more clever allocation of queue capacities speeds our methodology significantly.

For example. Table 4.8 shows the difference in run-times for the problems in Table 4.6

for p > 0.9 with queue capacities (268,134).

The relaxation factor in the Vl-method also causes an irregular run-time behaviour.

However, its use helps in reducing the number of the iterations needed in VI. For a

comparison in the number of iterations needed by Vl-plain and Vl-relaxation to converge

see Table 4.9.

www.manaraa.com

38

Table 4.7 Modified PI: CPU seconds and of iterations. RND.A.,
y.1 =2. N = 100 for p < 0.9, N = 200 otherwise

p CPU Total ^ iterations
0.10 74.2 117
0.15 32.9 50
0.20 27.4 41
0.25 39.2 60
0.30 62.7 98
0.35 88.2 140
0.40 118.1 189
0.45 112.3 180
0.50 134.0 216
0.55 194.1 315
0.60 203.9 831
0.65 352.5 576
0.70 302.4 493
0.75 356.0 581
0.80 257.8 420
0.85 473.1 774
0.90 7786.1 3208
0.92 4570.6 1887
0.95 5331.8 2199
0.98 38526.3 15919

Table 4.8 Effects of a more clever state space allocation in CPU seconds.
RNDA, Hi =2, = 1, iVi = 268, N2 = 134

P MPI Vl-relaxation
0.90 2241.9 10145.6
0.92 1558.2 17319.1
0.95 1491.6 36804.7
0.98 1922.6 78780.8

www.manaraa.com

39

Table 4.9 Number of iterations for VI with and without relaxation. N =
30

Service ratio P Vl-plain VI-relaxation
2:1 0.2 220 190

0.4 333 189
0.6 731 534
O.S 2390 671
0.9 .5783 1171

2.5:1 0.2 260 274
0.4 335 271
0.6 731 360
0.8 2.390 906
0.9 5786 1959

5:1 0.2 460 379
0.4 531 417
0.6 749 470
0.8 2398 1053
0.9 5805 3122

www.manaraa.com

40

CHAPTER 5 HEURISTIC METHODS

The state spaces in our problems grow very quickly as it has been demonstrated in

Chapter 3. Although, the methodology we have discussed in that chapter is useful in

obtaining the almost-optimal policy efficiently, it will become inappropriate for solving

these type of problems when the state space becomes sufficiently large. Therefore, it is

important to develop approximation methods that can be used to find good policies for

very large systems. Here, we will discuss several heuristic methods that can be applied

to the routing problem with dedicated arrivals.

We experiment with several different heuristic methods.

1. Never queue rule (NQ)

2. Individual-optimum rule (lOPT)

3. Separable rule (SR)

4. Greedy throughput rule (GT)

5. Hybrid rule (HYB)

5.1 Never Queue Rule

This rule sends an arrival to the fastest available server. If no server is available a

queue with minimal n,is chosen. This rule differs only slightly from the individual-

optimum rule where the service time of the new-coming customer is taken into account.

www.manaraa.com

41

5.2 Individual-optimum Rule

This rule is widely used as a heuristic for different problems in controlled QN area.

It minimizes the expected waiting time of an individual after arrival, but ignores the

effect of a customer's self-interested policy on the other customers. For our problem it

corresponds to joining the shortest queue. Some researchers use the term the shortest

expected delay rule which is equivalent to joining the shortest queue in our case. When

the servers are homogeneous this is the optimal policy. A customer is assigned to a

queue that satisfies

Tli + 1
mm .

'=1 m Hi

If there is a tie, the ties can be broken in favor of a queue that minimizes the variance

(assuming exponential service distributions)

rii + I
mm 5—.

'=^ tJ'i

5.3 Separable Rule

In PI, for a given policy one first needs to compute the relative values for each state.

Then, these values are used to improve the old policy. The bottleneck in this procedure

is finding the relative values. A candidate for a good heuristic is using a reasonable

policy -if it exists- that allows finding the relative values without solving a system of

linear equations , and then doing a one step policy-improvement.

A policy that makes computation of L and the relative values easy is the Bernoulli-

splitting policy. Therefore, another good candidate for an appro.ximate method is to use

Bernoulli-splitting as your initial policy, compute its relative values, perform a one-step

policy-improvement, and stop with the new policy. We have discussed the Bernoulli-

splitting policy and how to improve on that policy in Chapter 3. It was shown that it is

www.manaraa.com

42

sufficient to look at the impact of a new arrival on individual queues separately to find

the improved policy, hence the name: Separable rule.

5.4 Greedy Throughput Rule

This rule maximizes the expected number of service completions before the next

expected customer arrival. With this rule the server that satisfies

f
. max r

+ A,- + /!{

is chosen.

5.5 Hybrid Rule

Our experiments indicated that no previous rule has an overall advantage. We suggest

the following rule as an alternative heuristic method: In any state, the action that is

picked is the one chosen by the majority of the other rules. We call this rule the hybrid

rule.

5.6 Computational Results

Krishnan [24] worked on the RND.A. problem, and compared his heuristic method

only to the lOPT rule to measure the performance of his heuristic. However, other rules

do perform better than his as can be seen from Table 5.1.

Table 5.2- 5.4 show how the heuristic methods behave for different problems. The

heuristic rules, in general, give reasonable solutions. In most cases, they are not more

than 10% above the optimum solution. lOPT and NQ rules do not consider the arrival

streams at all. For that reason, when the faster server is expected to be heavily loaded

with dedicated arrivals they perform poorly against GT. GT, since it maximizes the

www.manaraa.com

43

Table 5.1 Performance in L for different heuristic methods. Problems re­
ported in Krishnan's paper. RNDA, A/" = 30

Service ratio P NQ lOPT SEP GT HYB Optimal
2:1 0.2 0.3773 0.3904 0.3787 0.3773 0.3773 0.3773

0.4 0.9419 0.9981 0.9511 0.9419 0.9419 0.9419
0.6 1.9451 2.0610 1.9630 1.9462 1.9451 1.9451
0.8 4.6594 4.8506 4.6797 4.6584 4.6594 4.6564
0.9 9.6884 9.9238 9.7054 9.6817 9.6884 9.6774

2.5:1 0.2 0.3733 0.3660 0.3734 0.3659 0.3659 0.3659
0.4 0.9410 0.9512 0.9425 0.9412 0.9410 0.9397
0.6 1.9419 2.0009 1.9517 1.9429 1.9419 1.9419
0.8 4.6480 4.7993 4.6766 4.6494 4.6480 4.6458
0.9 9.6724 9.8916 9.7127 9.6791 9.6724 9.6638

5:1 0.2 0.3967 0.3154 0.3152 0.3152 0.3152 0.3150
0.4 0.9935 0.8929 0.8832 0.8659 0.8659 0.8656
0.6 1.9877 2.0484 1.9233 1.8936 1.8871 1.S871
0.8 4.6771 5.0950 4.6957 4.6264 4.6047 4.6036
0.9 9.7059 10.3906 9.7724 9.6743 9.6494 9.6336

number of service completions until the next expected customer arrival, considers the

arrival streams partially. The SR, to a certain extent, considers the arrival streams

as well since the optimal Bernoulli-splitting probabilities are also based on the arrival

rates. The performance of the SR is difficult to assess because it involves a one-step

policy-improvement. The hybrid rule's performance is also difficult to guess. .Although

it does achieve the best results in many cases, it may also perform very poorly compared

to the others in some cases; the behaviour cannot be predicted beforehand.

www.manaraa.com

44

Table 5.2 Performance in L for different heuristic methods.
jii = 2, fX2 = 1, N = 50

Ai, A2 P NQ lOPT SEP GT HYB Optimal
0.5, 0.5 0.4 1.5451 1.5324 1.5.322 1.5451 1..5324 1.-5322

0.6 2.-5578 2..5.32S 2.6149 2.5704 2.-5578 2.-5316
O.S 5.3120 5.3141 5.4588 5.3710 5.3120 5.29-55
0.9 10.4735 10.5005 10.7047 10.5848 10.4735 10.4041

0.1. 0.1 0.2 0.4266 0.4293 0.4266 0.4266 0.4266 0.4266
0.4 0.9949 1.0282 1.0062 0.9949 0.9949 0.9949
0.6 2.0043 2.0910 2.0297 2.0072 2.0043 2.0043
O.S 4.7271 4.8855 4.7640 4.7328 4.7271 4.7271
0.9 9.8631 10.0662 9.9061 9.8690 9.8631 9.8-394

1.0. 0.0 0.4 1.2200 1.2675 1.2164 1.2405 1.2200 1.2164
0.6 2.2666 2.4390 2.2248 2.2783 2.2666 2.2176
O.S 5.0980 5.4005 4.9686 4.9586 5.0980 4.9528
0.9 10.3150 10.6935 10.1177 10.1170 10.31-50 9.9803

0.4, 0.2 0.4 1.0778 1.0963 1.0860 1.0860 1.0778 1.0778
0.6 2.1045 2.1729 2.1270 2.1270 2.1045 2.1045
O.S 4.8537 4.9958 4.8878 4.8862 4.8537 4.8-5-34
0.9 10.0024 10.1916 10.0475 10.0417 10.0024 9.9361

Table 5.3 Performance in L for different heuristic methods.
P-i = 2.5, fJ.2 = 1, iV = 50

Ai, A2 P NQ lOPT SEP GT HYB Optimal
0.3, 0.3 0.2 0.6234 0.6189 0.6189 0.6189 0.6189 0.6189

0.4 1.1913 1.1582 1.1869 1.1589 1.1-589 1.1-582
0.6 2.2108 2.1859 2.2342 2.2162 2.2108 2.1835
0.8 4.9418 4.9828 5.0276 4.9644 4.9418 4.9313
0.9 10.0764 10.1585 10.2249 10.1312 10.0764 10.0389

0.1, 0.1 0.2 0.4290 0.4178 0.4178 0.4178 0.4178 0.4178
0.4 1.0006 0.99.33 1.0025 1.0009 1.0006 0.9923
0.6 2.0083 2.0393 2.0220 2.0105 2.0083 2.0059
0.8 4.7223 4.8362 4.7657 4.7301 4.7223 4.7223
0.9 9.8512 10.0.303 9.9201 9.8640 9.8512 9.8327

1.5, 0.0 0.6 2.3811 2.5294 2.3639 2.3886 2.3811 2.3429
0.8 .5.2156 5.5720 5.0918 5.0674 5.2156 -5.0513
0.9 10.4.557 10.9467 10.2365 10.2385 10.4-557 10.0673

0.5, 0.2 0.4 1.0810 1.0715 1.0825 1.0825 1.0810 1.0708
0.6 2.1073 2.1289 2.1210 2.1210 2.1073 2.1048
O.S 4.8478 4.9523 4.8936 4.8649 4.8478 4.8477
0.9 9.9842 10.1557 10.0659 10.0504 9.9842 9.9240

www.manaraa.com

45

Table 5.4 Performance in L for different heuristic methods.
Hi = 5, ^2 = 1, iV = 50

Ai, A2 P NQ lOPT SEP GT HYB Optimal
0.5, 0.5 0.2 1.1822 1.1628 1.1628 1.1628 1.1628 1.1628

0.4 1.7955 1.6129 1.6126 1.6282 1.6129 1.6125
0.6 2.8048 2.5740 2.5972 2.6902 2.5972 2.5719
0.8 5.4828 5.3888 5.7106 5.5063 0.3856 5.3135
0.9 10.5892 10.6436 11.0921 10.8258 10.5158 10.4.567

0.1. 0.1 0.2 0.4691 0..3930 0.3929 0.3937 0.3929 0.3929
0.4 1.0723 0.9440 0.9308 0.9308 0.9307 0.9302
0.6 2.0698 2.0651 2.0067 1.9710 1.9613 1.9538
0.8 4.7584 5.0758 4.80.38 4.7190 4.6801 4.6800
0.9 9.8826 10.4581 10.0048 9.8822 9.8209 9.8129

4.0, 0.0 0.8 5.9861 6.7382 5.7438 5.7430 6.0215 5.6285
0.9 11.3240 12.6557 10.6422 10.7607 11.3543 10.4068

1.0, 0.2 0.4 1.1.321 1.0268 1.0230 1.0498 1.0230 1.0226
0.6 2.1.587 2.1241 2.1072 2.0979 2.0617 2.0477
0.8 4.8739 5.1343 4.9374 4.8932 4.8032 4.80.32
0.9 9.9835 10.4966 10.1569 10.0883 9.9289 9.8905

www.manaraa.com

46

CHAPTER 6 CONCLUSION

In this dissertation we have looked at a controlled QN where a controller routed the

incoming arrivals to parallel queues using state-dependent rules. The queues also had

dedicated arrivals which could only be serviced by them. We assumed Poisson arrival

processes, and exponential service times.

The problem was modeled as an SMDP. We pointed out a misconception in the

literature about problems similar to ours. We developed a Pl-based exact methodology

which performed better than the current methods including VI which is widely thought

as the method to use for large-scale problems. VI with relaxation converges -if at all-

in fewer number of iterations than Vl-plain. However, there could be two problems

with this procedure; it is not guaranteed to converge, and with sufficiently large state

space, the extra work involved in Vl-relaxation could actually make it even slower than

Vl-plain.

We made several changes to the traditional Pl-method to be able to solve our prob­

lem efficiently. Observing the interdependence of the solutions in consecutive iterations

of Pl-method made it possible to use the iterative methods in solving our systems of

linear equations very effectively. Sparsity, a good initial solution, and allocation of the

state space were other factors that affected the performance of our methodology. Using

this methodology we solved much larger problems than reported in the literature. Our

methodology is a candidate to solve other problems efficiently as well. One other advan­

tage of our methodology was to use it to evaluate a given policy efficiently which cannot

be done with other MDP techniques.

www.manaraa.com

47

We also looked at how several heuristic methods performed on our problem. The

study Wcis comprehensive, and it included all the heuristic ideas we have encountered in

the literature that could be applied to our problem. We have used our exact methodology

rather than simulation to evaluate these methods. No heuristic method has surfaced as

the best heuristic to use for all instances. In general, however, these heuristic methods

offer very quick and reasonable solutions to very big problems. This is important since

with MDP techniques the size of the problems one can solve is limited by the current

computer technology.

Part of the research in this dissertation is a first-step in combining PI with iterative

methods. We have demonstrated that PI is better than VI or LP for solving our problem,

and we feel that the methodology we have proposed has large room for improvement.

In our opinion, an iterative method that should be used in solving the systems of linear

equations that arise in a particular problem should be tailored for that problem. For

further research, one could pursue developing better iterative methods that take the

characteristics of our problem into consideration. It is important to make efforts in this

direction since the other techniques do not promise any more improvements. We also

believe that this should be the path to take in solving other problems one may encounter

in controlled QN settings.

www.manaraa.com

48

APPENDIX A GENERAL SOLUTION TECHNIQUES

Markov decision processes provide a general framework to solve controlled QNs.

White [55] [56] gives a list of real applications of MDPs. Markov chains can be used to

model problems when the probabilistic law of motion is fixed. In MDPs, the interest lies

in the policy that will achieve a certain performance measure the best. Since in practical

cases the number of policies are finite, one can evaluate each policy using Markov chains

and then pick the best policy. Often though, this is a very inefficient procedure. Let us

first give a more formal description of MDPs. We observe a dynamic system at discrete

points in an infinite time-horizon. Then, the system is classified into one of the finite

states, and an action is taken. The discrete time points when the actions are taken are

called decision epochs. The action set is assumed to be finite. An action results in an

immediate cost (which does not depend on the history of the system, but only on the

state you are in, and the action you have taken), and with some probability the system

goes to another state. The probabilities also do not depend on the history of the system.

If we observe the system in equidistant points than the underlying process is called a

discrete-time MDP (DMDP). However, in many problems, the times between actions

are random. Now assume, that the time till the next decision epoch only depends on

the state you are in and the action you have taken. Such a model is referred to as

semi-Markov decision process. A semi-Markov decision model can also be converted to

a discrete-time model.

In general, an optimal policy does not need to be stationary (a stationary policy is one

where at any time point the decision taken in a given state remains the same). It could

www.manaraa.com

49

be randomized, too. However, because of the Markovian assumptions, we oaiy need to

consider the stationary policies. For all practical purposes, the stationary policies also

satisfy the so called unichain assumption which says that there exists some state which

can be reached from any other state under a policy. This assumption is needed to prove

the existence of a stationary distribution for a given policy.

We will not attempt to review all literature about MDPs. The following books are

some good access points to literature. Ross [39] discusses the theory for these processes

in his excellent book, while Tijms' [51] [50] approach is a more computational one. Hillier

and Lieberman [14] also have an introductory chapter on MDPs.

There are three general algorithms to solve MDPs:

1. Policy iteration

2. Value iteration

.3. Linear programming

In what follows we will focus on SMDPs. However, most of the discussions also apply

to DMDPs.

Policy Iteration

Once a policy is fixed, the underlying process is nothing but a continuous-time

Markov chain. Therefore, in theory we could go through the finite number of poli­

cies, each time solving for the Markov chain, and finally pick the best policy as our

optimum. However, this turns out to be a very inefficient method most of the time.

Instead, policy iteration method constructs a sequence of improved policies until the

optimum is reached. Typically, this method goes only through a few number of policies

to find the optimum. This method was developed by Howard [20]. The algorithm uses

the so called relative values, u,•(/?), which give a relative measure of the effect of starting

www.manaraa.com

50

at state i on the total expected costs using the policy R. The difference V j {R) — Vi{R)

has an economic interpretation: It represents the difference in total expected costs over

an infinitely long period of time by starting in state i rather than j when using the

policy R. Other notation we use is

C i { a) : the expected costs until the next decision epoch if action a is chosen in the present

state i,

Pi j{ a) : the probability of being in state j in the next decision epoch if action a is taken

in the present state i,

T i { a) : the expected time until the next decision epoch if action a is taken in the present

state i.

Now, the algorithm can be given as follows([ol]):

1. (initialization) Choose a stationary policy R.

2. (value-determination step) To compute the average cost g{R), and the relative

values u,•(/?), i G /, for the current rule R, solve the following system of linear

equations for its unique minimum:

where r is arbitrarily chosen.

3. (policy-improvement step) For each state i determine an action a, that gives the

minimum in

The improved policy is the one which applies the actions that yield the minimum

in the above equation for each state.

Vi = Ci[Ri) - gTi[Ri) + XIp,j(/1,)uj, i 6 /,
jei

Vr = 0,

mjn S Ci(a) " 9 { R) T i [a) + Y , P i M) ^ A ^)
a6-4(<)

www.manaraa.com

51

4. (convergence test) If the new policy is the same as the old one, stop. Otherwise

replace the old policy with the new one, and go to the value-determination step.

Value Iteration

In VI one avoids solving a system of linear equations. Instead, a recursive solution

approach from dynamic programming is used, i.e. recursively a sequence of value func­

tions is computed which approximate the minimum average cost per unit time. Here,

we need to introduce some more notation. Let Vn{i) be the minimal total expected costs

when n periods are left when the current state is i, and a final cost Vo(j) is incurred if

the system ends up in state j. The difference Ki(!) — Vn-i{i) will come very close to the

minimum average cost per unit time for large n. In the algorithm the value function

V^z) is computed from

starting with an arbitrarily chosen Vo(2).

An alert reader must have recognized that in the above recursion relationship the

random times between two consecutive decision epochs have not been taken into account.

For the VI method to work for SMDPs, the system is converted into a DMDP and

then the method is applied. We now will give the algorithm with the appropriate data

transformation. This transformation is due to Schweitzer [40] (see also the related work

o f L i p p m a n [2 9]) . I n t h e f o l l o w i n g , 0 < r < m i n , - , a T i { a) .

1. Choose Vo(f) such that 0 < Vo{i) < miria {c,(a)/T',(a)} for all i. Set ra = 1.

2. Compute the functional equations for each i €. I from

R{n) is the stationary policy that minimizes the right side of the above equation.

mm
a64(i)

V n { i) = + 1 - ^ V n - d i) \ .

www.manaraa.com

52

3. Compute the bounds

6n = min{V;(i) - Ki_i(j)} ,
jet

Bn = max {VnU) - Ki-i(i)} .

Stop with the current policy when 0 < (5„ — 6„) < e6„, where e is a prespecified

accuracy number. Otherwise, n = n + I and go to the second step.

The number of iterations in this algorithm can be significantly decreased by using a

dynamic relaxation factor. This modification to the algorithm is due to Popyack et al.

[35]. Although the modified method is not guaranteed to converge, it is useful for all

practical purposes. Only the last step of the previously stated algorithm changes in this

modified version. In step 3,

Determine the states m and M such that

Set, n = n + 1 and go to step 2.

In case of a tie when determining the states m (M) one chooses the minimizing

(maximizing) state from the previous state if it is a candidate, too. Otherwise, the first

state that achieves the minimum (maximum) can be chosen. When the relaxation factor

is used the difference between the value functions from the current iteration to the next

for the current m and M will be zero. This usually helps in decreasing the difference

between the new lower and upper bound more quickly.

V n i m) - K . - l (m) = b n , V r ^ i M) - V;_i(M) =

Compute the relaxation factor

u = i B ^ - b n) /

- 6 „ + E [P m j i R n i m)) - pMjiRniM))] [V ; (i) - V n - d j)]
I jel

For each state i, recompute

K.(0 = K-l(^•)+u;[K(0 - v;_i(0]

www.manaraa.com

53

Liuecir Programming

Next, we give a general LP formulation for SMDPs that finds the optimal average

c o s t g ' .

Minimize g

subject to

Vi -Yl pij{a)vj + gTi{a) > c.(a), i E I , a e .4(/),
J&r

g and u,- unrestricted in sign.

An LP formulation for MDPs was first given by Manne [31]. Several other researchers

worked on LP formulations including Denardo and Fox[S], Osaki and Mine [34], Derman

[9], and Hordijk and Kallenberg [16].

Comparison of Standard Methods

The LP and PI methods are related. In fact, PI can be looked at as an LP in

which more than one basic variable is being changed in every iteration (block pivoting).

Nevertheless, both of these methods involve simultaneously solving a system of linear

equations. PI usually converges in a few iterations. However, each iteration is compu­

tationally more involved than a simplex iteration because at each iteration a system of

linear equations is solved simultaneously. On the other hand, the number of simplex

iterations depends on the problem and this number could be very large. One should also

note that the number of variables needed in the LP formulation is considerably more

because one needs a variable for each state and for each action in that state.

In general, VI is considered the method to use for large systems. It is argued that solv­

ing a big system of linear equations is computationally more cumbersome than solving

the recursive relationships of value functions in VI. Value functions give an approxima­

tion to the average cost per unit time. VI needs quite a few number of iterations before

www.manaraa.com

54

finding a solution within the tolerance limits. At each of these iterations, with a one-pass

computation, the value functions of the states for the next iteration are computed using

the values from the previous iteration. However, to compute each value function one

has to consider the states that can be reached from that particular state because they

are used in computing the value function for that state. Therefore, the computational

burden of VI is directly related to the number of states, and to the number states that

can be reached from each state. One advantage of VI is that it is very easy to write your

own code.

VI with the relaxation factor may converge faster (require fewer iterations) if it

converges at all. However, it is not guaranteed to converge. Also, with many many

states the overhead that is required to find the relaxation factor and updating the value

functions can be a burden. Therefore, the plain VI can actually finish earlier although

with the relaxation the number of iterations is less.

Often, one is interested in how a particular policy will perform against the others.

VI and LP cannot be used to evaluate a policy. Both of these methods yield an optimal

policy only when they finish. PI, on the other hand, evaluates a policy at each value-

determination step. Therefore, it is useful to evaluate a policy which is a major advantage

of this algorithm.

www.manaraa.com

55

APPENDIX B A RESOURCE ALLOCATION PROBLEM

If the controller uses a probabilistic rule rather than a state-dependent rule in taking

its decisions, then the problem falls into the category of resource allocation problems.

We have been calling this probabilistic rule the Bernoulli-splitting rule. Due to its wide

applications this has been the topic for several research papers including Tang and van

Vliet [49], Mitrani and Wright [32], and Lee [27] among others. Buzen and Chen [5]

is one of the earlier publications on the subject. Although, in more general cases the

optimal probabilities have to be obtained by solving a nonlinear optimization problem,

with M/M/1 queues the closed-form solution for them can be written e.xplicitly. These

formulae have been given by Bonomi and Kumar [4]. Here we offer another and easier

way of solving for them.

The problem can be stated as

mmimize

such that

m

1=1
0 < A,- "t" p,Ao < Vf.

Now, consider a relaxation of this problem

mmimize

www.manaraa.com

56

such that

m

1 (B. l)
1=1

A,- + piXo < m, Vi, (B-2)

where we have ignored the lower bounds.

Both of these problems are separable and convex problems. Ibaraki and Katoh [21]

show that for this type of problem if any solution is negative it can be set at 0. Their

proof involves relaxation of the upper bound, but a similar proof applies here. Based on

this knowledge one can give an easy algorithm to find the optimal probabilities.

1. Set / = 1, ..., m and k = m.

2. Solve the relaxed problem for p = pi,

3. If Pi > 0, Vi, stop.

4. Otherwise set p,- = 0 for all i with p,- < 0, say n of them. Set k = k — n and

I = I — {j £ I\pj < 0} and go to the second step.

It remains to figure out how to solve for p in Step 2. Consider a problem of the kind

o p t i m i z e f { p)

such that g { p) = c,

where = c represents a set of constraints with k of them. The so called Lagrangian

Multiplier Rule can then be stated for this problem as

Theorem B.l Assume f and each gi are differentiable and continuous. Let p an in­

terior point which gives a relative minimum (or maximum). Then, there are numbers

01, ..., 0i, 00, called Lagrange multipliers, that are not all zero, such that

4'i9[{P) + - + i^kg'kip) + 0o/'(p) = 0

g i p) = c .

www.manaraa.com

57

Let, J { p) be the { k + 1) by m Jacobian matrix

^ { P)

f ' i P)

Then, by the Lagrangian Multiplier Rule the system {xb\ i/'it. i/'o]^(p) = 0 of m

linear equations in the ^ + 1 unknowns has a non-trivial solution. In matrix theory,

this is equivalent to every (/: -1- 1) by {k + I) submatrix of J{p) having determinant

zero. Therefore, to find the candidates p for solutions to the problem we set each such

determinant to zero to get m — k new conditions on p which one can combine with the

original constraints.

The .Jacobian for our relaxed problem is

1 1 . . . 1

\o(lm
(MI—Ai—Pi-\o)2 (MZ—-^2—P2-\o)^ (^m —Am—Pm^o)^

Every two by two submatrix should have determinant zero. Taking the first two

columns as an example we obtain

Pj.
(//I - Ai-piAo)^ {p.2 - >^2 - P2>^of

Solving for p2 in terms of pi we get a quadratic equation with the following solutions

p2(pi) = .
Ao/ii

Since A2 + P2A0 < (J.2 we only need to consider the solution with the negative sign.

Using the other submatrices we get every p,- in terms of one of them, say pi- Now using

Constraint B.l we can solve for pi which yields

^1

m m

- A.) +
t=2 1=2 Ai

- m

1=2

Ao m

1=1

AQ
m

-1=1

www.manaraa.com

58

In general, V i

Pi = Y

m m

•^0 ~ ~ "1"
- m

J - l J = l

J#« J5^» A.-
j=i

m

E \/
Ao m

i=i j=i

(B.3)

www.manaraa.com

59

BIBLIOGRAPHY

[1] Y. Arian and Y. Levy. Algorithms for generalized round-robin routing. Operations
Research Letters^ r2(5):313-319, 1992.

[2] S.A. Banavvan and J. Zahorjan. Load sharing in heterogeneous queueing systems.
In Proceedings of IEEE INFOCOM '89, pages 731-739, 1989.

[3] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donate, J. Dongarra, V. Eijkhout.
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

[4] F. Bonomi and A. Kumar. Adaptive optimal load balancing in a nonhomogeneous
multiserver system with a central job scheduler. IEEE Transactions on
Computers, 39(10): 1232-1250, 1990.

[5] J.P. Buzen and P.P.S. Chen. Optimal load balancing in memory hierarchies. In
Proceedings of IFIP, pages 271-275, 1974.

[6] C.S. Chang, X.L. Chao, and M. Pinedo. A note on queues with Bernoulli routing.
In Proceedings of the 29th IEEE Conference on Decision and Control, pages
897-902, 1990.

[7] M.B. Combe and O.J. Boxma. Optimization of static traffic allocation policies.
Theoretical Computer Science, 125:17-43, 1994.

[8] E.V. Denardo and B.L. Fox. Multichain Markov renewal programs. SI.AM Journal
of Applied Mathematics, 16:468-487, 1968.

[9] C. Derman. Finite State Markovian Decision Processes. Academic Press, New
York, 1970.

[10] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing problem.
IEEE Transactions on Automatic Control, 25(4):690-693, 1980.

[11] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer-Verlag, New York, 1994.

[12] B. Hajek. Optimal control of two interacting service stations. IEEE Transactions
on Automatic Control, 29(6):491-499, 1984.

www.manaraa.com

60

[13] B. Hajek. Extremal splittings of point processes. Mathematics of Operations
Research^ 10(4):543-556, 1985.

[14] F.S. Hillier and G.J. Lieberman. Introduction to Operations Research.
McGraw-Hill, New York, 1990.

[15] M. Hlynka, D.A. Stanford, W.H. Poon, and T. Wang. Observing queues before
joining. Operations Research, 42(2):365-371, 1994.

[16] A. Hordijk and L.C.M. Kallenberg. Linear programming and Markov decision
chains. Management Science, 25(4):352-362, 1979.

[17] A. Hordijk and G.M. Koole. On the optimality of the generalized shortest queue
policy. Probability in the Engineering and Informational Sciences, 4:477-487. 1990.

[18] A. Hordijk, G.M. Koole, and J.A. Loeve. Analysis of a customer assignment model
with no state information. Technical Report TW-93-15, Leiden University, 1993.

[19] D.J. Houck. Comparison of policies for routing customers to parallel queueing
systems. Operations Research, 35(2):306-310, 1987.

[20] R.A. Howard. Dynamic Programming and Markov Processes. Wiley, New York.
1960.

[21] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches.
The MIT Press, Cambridge, Massachusetts, 1988.

[22] A. Itai and Z. Rosberg. A golden ratio control policy for multi-access channel.
IEEE Transactions on Automatic Control, 29:712-718, 1984.

[23] P.K. Johri. Optimality of the shortest line discipline with state-dependent service
rates. European Journal of Operational Research, 41:157-161, 1989.

[24] K.R. Krishnan. Joining the right queue: A Markov decision rule. In Proceedings
of the 26th Conference on Decision and Control, pages 1863-1868, 1987.

[25] P.R. Kumar and J. Walrand. Individually optimal routing in parallel systems.
Journal of Applied Probability, 22:989-995, 1985.

[26] R.L. Larsen and A.K. Agrawala. Control of a heterogeneous two-server
exponential queueing system. IEEE Transactions on Software Engineering,
9(4):522-526, 1983.

[27] H. Lee. Simultaneous determination of capacities in parallel M/M/1 queues.
European Journal of Operational Research, 73:95-102, 1994.

[28] W. Lin and P.R. Kumar. Optimal control of a queueing system with two
heterogeneous servers. IEEE Transactions on Automatic Control, 29(8):696-703.
1984.

www.manaraa.com

61

[29] S.A. Lippman. Applying a new device in the optimization of exponential queueing
systems. Operations Research, 23:687-710, 1975.

[30] Z. Liu and D. Towsley. Optimality of the round-robin routing policy. Journal of
Applied Probability, 31:466-475, 1994.

[31] A.S. Manne. Linear programming and sequential decisions. Management Science.
6:259-267, 1960.

[32] I. Mitrani and P.E. Wright. Routing in the presence of breakdowns. Performance
Evaluation, 20:151-164, 1994.

[33] L.M. Ni and K. Hwang. Optimal load balancing in a multiple processor system
with many job classes. IEEE Transactions on Software Engineering,
11(5):491^96, 1985.

[34] S. Osaki and H. Mine. Linear programming algorithms for semi-Markovian
decision processes. Journal of Mathematical Analysis and .Applications,
22:256-381, 1968.

[35] J.L. Popyack, R.L. Brown, and C.C. White IIL Discrete versions of an algorithm
due to Varaiya. IEEE Transactions on Automatic Control, 24:503-504, 1979.

[36] S.I. Resnick. Adventures in Stochastic Processes. Birkhauser, Boston, 1992.

[37] Z. Rosberg and P. Kermani. Customer routing to different servers with complete
information. Advances in Applied Probability, 21:861-882, 1989.

[38] Z. Rosberg and A.M. Makowski. Optimal routing to parallel heterogeneous
servers-small arrival rates. IEEE Transactions on .Automatic Control,
35(7):7S9-796, 1990.

[39] S.M. Ross. .Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco, 1970.

[40] P.J. Schweitzer. Iterative solution of the functional equations of undiscounted
Markov renewal programming. Journal of Mathematical .Analysis and
Applications, 34:495-501, 1971.

[41] K. Seth. Optimal service policies, just after idle periods, in two-server
heterogeneous queueing systems. Operations Research, 25(2):356-360. 1977.

[42] S. Shenker and A. Weinrib. The optimal control of heterogeneous queueing
systems: A paradigm for load-sharing and routing. IEEE Transactions on
Computers, 38(12):1724-1735, 1989.

[43] T. Skalicky. LASPack Reference Manual. Dresden University of Technology, 1995.

www.manaraa.com

62

[44] M.J. Sobel. Throughput maximizatioa in a loss queueing system with
heterogeneous servers. Journal of Applied Probability^ 27:693-700, 1990.

[45] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, New Jersey, 1994.

[46] S. Stidham and R. Weber. A survey of Markov decision models for control of
networks of queues. Queueing Systems, 1.3:291-314, 1993.

[47] R.H. Stockbridge. A martingale approach to the slow server problem. Journal of
Applied Probability, 28:480-486, 1991.

[48] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. John
Wiley & Sons, Chichester, 1983.

[49] C.S. Tang and M. van Vliet. Traffic allocation for manufacturing systems.
European Journal of Operational Research, 75:171-185, 1994.

[50] H.C. Tijms. Stochastic Modelling and Analysis: A Computational Approach.
Wiley, New York, 1986.

[51] H.C. Tijms. Stochastic Models: .\n .Algorithmic .Approach. Wiley, New York. 1994.

[52] D. Towsley, P.D. Sparaggis, and C.G. Cassaadras. Optimal routing and buffer
allocation for a class of finite capacity queueing systems. IEEE Transactions on
Automatic Control, 37(9):1446-1451, 1992.

[53] J. Walrand. A note on "Optimal control of a queueing system with two
heterogeneous servers". Systems and Control Letters, 4:131-134, 1984.

[54] R.R. Weber. On the optimal assignment of customers to parallel servers. Journal
of Applied Probability, 15:406-413, 1978.

[55] D.J. White. Real applications of Markov decision processes. Interfaces,
15(6):73-83, 1985.

[56] D.J. White. Further real applications of Markov decision processes. Interfaces,
18(5):55-61, 1988.

[57] W. Whitt. Deciding which queue to join: Some counterexamples. Operations
Research, 34(l):55-62, 1986.

[58] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 14:181-189, 1977.

[59] S.H. Xu. A duality approach to admission and scheduling controls of queues.
Queueing Systems, 18:273-300, 1994.

www.manaraa.com

63

[60] S.H. Xu and H. Chen. On the asymptote of the optimal routing policy for two
service stations. IEEE Transactions on Automatic Control, 38(1):1S7-1S9, 1993.

[61] S.H. Xu and J.G. Shanthikumar. Optimal expulsion control-a dual approach to
admission control of an ordered-entry system. Operations Research,
41(6):1137-1152, 1993.

[62] S.H. Xu and R. Righter J.G. Shanthikumar. Optimal dynamic assignment of
customers to heterogeneous servers in parallel. Operations Research,
40(6):1126-1138, 1992.

[63] S.H. Xu and Y.Q. Zhao. Dynamic routing and jockeying controls in a two-station
queueing system. To be published.

[64] T.P. Yum. The design and analysis of a semidynamic deterministic routing rule.
IEEE Transactions on Communications, 29(4):498-o04, 1981.

	1997
	Solution methods for controlled queueing networks
	Sabri Tankut Atan
	Recommended Citation

	

