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CHAPTER 1 INTRODUCTION AND LITERATURE 

REVIEW 

1.1 Introduction 

The building blocks of a queueing network (QN) consist of one or more input streams 

of customers (single units or batches), one or more buffers (finite or infinite), and one or 

more servers. In addition to these physical components a set of policies are defined to 

specify the rules for queueing and servicing the customers. By adding several of these 

building blocks -queueing systems (QSs)- together, a QN is obtained. 

Since the birth of queueing theory at the beginning of the twentieth century, literature 

on the subject has grown enormously. In this dissertation, we focus on controlled QNs as 

opposed to descriptive problems where one is interested in a certain performance measure 

for the system such as average waiting time of each customer, or expected number of 

customers in the system per unit time. In control problems, the process happens in 

continuous time. However, a controller can, for example, change certain parameters of 

the system, or affect how the customers are routed through the system at discrete time 

points, called decision epochs, pursuing a goal such as the average waiting time of each 

customer. The controller tries to find a policy, i.e. a sequence of decisions -e.g. which 

queue to join, to accept or reject the incoming customers- to achieve its goal. 

In this dissertation, we consider a problem which is the building block of many 

systems, and its solution is important from a practical point of view. We develop an 

exact methodology, which is better than the current methods, for solving this type of 
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problem. This methodology is not specific to our problem; it can be used to solve many 

other problems in controlled QN settings. We also compare several heuristic methods, 

which can be used for very large problems. In this comparison study, we use all the 

heuristic ideas that we have encountered in the literature, and also suggest another 

heuristic method. The comparisons are made against the exact methodology' we develop 

since it offers a very efficient way of evaluating a given policy. Moreover, we point out 

a misconception in the literature regarding our type of problems. 

To be more specific, we concentrate on a problem where the rates (service and arrival) 

and the number of servers are fixed. The servers serve in parallel and they have their 

own queues with infinite capacity in front of them. There are several arrival streams 

to the system. Each queue has an arrival stream that automatically joins it. On top 

of this, there is a general arrival stream. The general customers can be served by any 

of the servers, and it is the job of the controller to decide which queue each general 

customer should join to receive service. When making decisions the controller is trying 

to minimize the average number of customers in the system per unit time. We will give 

a formal and detailed description of the problem in Chapter 2. 

Due to their wide applicability in manufacturing systems and computer networks 

these type of QNs have recently received a lot of attention. Researchers have difficulty 

in analyzing such systems because of their analytical complexity. Most of the results 

indicate what the structure of the optimal policy is, which in many cases boils down 

to showing that something very intuitive is in fact the optimal policy. These structural 

results are only limited to very small networks (two servers). On the other hand, even 

for such small systems, it is not clear how the parameters of the optimal policy should be 

obtained in an efficient way. Without the parameters, the structural properties alone are 

not of much help for practical purposes. Moreover, computational problems and mem­

ory limitations severely affect the size of problems that can be solved computationally. 

For the problems that can be solved within the given computer memory limitations, the 
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efBciency in solving for the optimal control parameters is very important which is what 

we are focusing on in this dissertation. The larger the problem size, the more computa­

tional efficiency becomes a handicap. With our methodology that will be described in 

Chapter 3 we efficiently solve larger problems than previous researchers. 

1.2 Classification of Problems 

The problems in the area of controlled QNs can be classified with respect to many 

attributes: 

1. Routing vs. scheduling: An important portion of previous work has been dedicated 

to either routing problems -in which customers are allocated at the time of their 

arrival- or to scheduling problems -in which customers are maintained in a single 

queue and allocated to servers when they become idle. It should be noted though 

that this distinction of terms is not universal. Our problem is a routing problem. 

2. The amount of system information available to the controller: Complete, partial 

or none. If the controller has complete information then it knows the length of 

all queues, and all of the arrival and service rates at the time of an action. On 

the other hand, it may have partial information or no information at all. The 

research focuses on the first and third cases. We assume that all the information 

is available. 

3. The goal: While the individual customers are interested in optimizing their inter­

ests, the controller seeks the social optimum. Although for some systems these 

two goals coincide, this is not true in general. Analytically, it is easier to find the 

individual optimum, but the more interesting case is finding the social optimum. 

The objective often is to minimize the discounted cost or long-run average cost. 

We are interested in the long-run average cost. Often, structural properties of the 
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optimal policies are the same for both of the cost problems. .A,lso, the optimal 

policies for the long-run average cost can be derived using the results from the 

solution to the former objective, the discounted cost problem. But certain condi­

tions should be satisfied for the long-run average cost to have an optimal stationary 

policy (a stationary policy is one where at any time point the decision taken in a 

given state remains the same). 

4. Heterogeneous vs. homogeneous servers: Homogeneous servers are those that have 

equal service rates. This assumption simplifies the analysis, and most of the re­

ported results are related to this case. When servers have different service rates 

they are called heterogeneous. We deal with heterogeneous servers. 

5. Topology: The QN may have different layouts such as parallel or tandem. Our 

layout is parallel. 

6. Dynamic vs. static assignment: In static assignment rules the actions do not de­

pend on the state of the system. Dynamic assignment rules give better perfor­

mance but their implementation is much more complicated. Due to their superior 

performance, we are looking for dynamic assignment rules. 

The problems that occur within the framework of controlled QNs are very popular 

due to their applicability in many fields such as manufacturing, telecommunications, and 

computer networks. This leads to a large number of publications that are published in 

very different journals. In our review, we concentrate on problems where the common 

characteristic is parallel layout. We would like to emphasize that the existing research 

focuses on proving the structure of the optimal policy, and that this can only be done 

for small networks with two servers. The literature review that follows can be skipped 

during the first reading. 
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o 
o ^^2 

o 
Figure 1.1 A routing problem (RNDA) 

1.3 Literature Review 

Stidham and Weber [46] give a comprehensive survey of Markov decision models for 

control of networks of queues. While we are reviewing the literature, we will focus on 

QNs with parallel queues. As mentioned earlier, this can be done in two distinctive 

categories, namely routing and scheduling. 

1.3.1 Routing 

Consider the system in Figure 1.1 which will be denoted as routing with no dedicated 

arrivals (RNDA). Customers arrive to the system according to a Poisson process with 

rate A. At the time of their arrival a controller routes them to a queue, queue k, served 

by an exponential server with rate //jt. Also we assume that the servers are numbered 

in decreasing order of server speed. Once routed, a customer stays in that queue until 

it finishes service. We also assume that the service discipline is FIFO (first-in-first-out). 

The exponentiality is widely assumed in the literature. If more general distributions are 

used this will be indicated. 

Winston [58], Weber [54] and Ephremides et al. [10] showed that if the system 

consists of identical iV//M/l queues in which the queue lengths are known at any time. 



www.manaraa.com

6 

then the expected discounted cost is minimized by the shortest queue policy, i.e. by 

a policy that routes the customers to the shortest queue at their arrivals. .Johri [23] 

extends the domain of optimality of the shortest queue policy to state-dependent service 

rate case. Hordijk and Koole [17], and Towsley et al. [52] consider finite buffer queues 

with more general arrival processes, and once again optimality of shortest queue policy 

is proved. Xu et at. [62] considered a routing problem where there are two classes 

of customers to be served by two stations, with parallel servers in each station. The 

servers are homogeneous. Class-1 customers can be served only by station 1 whereas 

class-2 customers are free to choose a station. It is shown that to minimize the long-run 

average cost a class-j customer, whenever possible, should be assigned to an idle server 

in station j. and a class-2 customer should be assigned to an idle server in station 1 

only if (no class-1 customers are waiting, and) the length of queue 2 exceeds a critical 

number. 

As opposed to the above cases where the controller can observe the queue lengths, 

there are applications where this information is not available. Ephremides et al. [10] 

proved for two queues that the round-robin policy is optimal when the controller has 

access to only the past routing decisions and the service times are exponentially dis­

tributed with the same rate. The round-robin policy sends customers one by one to 

different servers until all of the servers are used, and continues sending the customers 

to the servers in the same order. Since the servers are equally fast the order is not im­

portant, and by keeping the same order in each cycle the times between arrivals to any 

server are balanced. Stoyan [48] showed that the round-robin policy gives stochastically 

smaller waiting times than the Bernoulli policy with equal routing probabilities to each 

queue. This particular Bernoulli routing policy has been shown to be optimal among 

all the Bernoulli policies [6]. Recently, Liu and Towsley [.30] extended the optimality of 

round-robin policy to service times with an increasing failure rate distribution. 

In the case of heterogeneous servers, the structure of the optimal policy is only known 
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for the two-queue case. Hajek [12] proved that if the system has two heterogeneous 

MfMfl queues, then a switch-over policy minimizes the discounted (or average) cost 

with linear holding cost. A switch-over policy can be formally described as: If ar,- denotes 

the queue length at queue i, then there exists an increasing function F{xi) such that 

an arriving customer is routed to server 2 if X2 < F{xi). Xu and Chen [60] recently 

showed that with the discounted cost criterion the optimal switching curve has a finite 

asymptotic limit when Ci ^ C2, where c,- is the unit holding cost per unit time at station 

i. They also show that there is no finite asymptote in case of long-run average cost. Xu 

and Zhao [63] allow jockeying, i.e. the controller can change its routing decision and send 

some customers to the other queue after they have joined one queue, between the two 

queues and characterize the structure of the dynamic routing and jockeying policies that 

minimize the expected total cost, for both discounted and long-run average cost criteria. 

VVhitt [57] gives examples in which the shortest expected delay policy is not optimal. 

There are several examples; with multiple exponential servers, under general service 

times, and also in the ca^e where only the number of customers in the queues are known. 

Houck [19] uses a simulation study showing that the shortest expected delay policy 

performs nearly optimally when there are two stations with parallel, identical servers, 

where each station has a single queue. Banawan and Zahorjan [2] did a numerical study 

showing that in RNDA the individually optimal policy is actually the optimal decision in 

most of the states. The optimal strategies were obtained using policy iteration. Rosberg 

and Kermani [37] compared an overflow routing heuristic against a lower bound. For 

high traffic intensities their method moves away from the lower bound. The problem in 

Houck's paper with heterogeneous servers was solved by Krishnan [24] using a one-step 

policy improvement algorithm starting with a Bernoulli-splitting policy. This heuristic 

method performs better than the shortest queue policy. Later, Shenker and VVeinrib [42] 

give cases where the shortest queue policy does not perform very well. They also use 

simulation to compare several heuristic policies. Hlynka tl al. [15] talk about a case with 
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two queues where a single smart customer can observe the queues before joining and only 

after some arrivals or service departures have occurred he enters a queue. They show 

that this single customer can lower its expected sojourn time by using the information 

gained before entering the queue rather than joining the shortest queue immediately. 

In case of heterogeneous servers, when the queue length information is not available, 

there also exists considerable amoimt of research to find the best sequence for routing 

customers to the queues. Hajek [13] gives the optimal sequence for two queues given that 

fraction p of the customers should be sent to the first queue. For more than two queues 

the optimal sequence is not known, but many good sequences have been obtained. The 

sequences given in Yum [64], and Itai and Rosberg [22] are some of them. Arian and Levy 

[1] give a sequence based on Hajek's optimal two-queue sequence which outperforms the 

previous sequences. Combe and Boxma [7] obtained another sequence based on Hajek's 

sequence but they don't include a numerical study showing how good their sequence is. 

Hordijk et al. [18] give a close-to-optimal sequence. Their numerical studies show that 

both their sequence and Combe and Boxma's sequence indeed perform very well, and 

the period of their sequence is smaller. Combe and Boxma discuss general properties 

and optimization aspects for probabilistic assignment, and for a policy that follows a 

fixed pattern which may have been generated by any of the above-mentioned sources. 

1.3.2 Scheduling 

By allowing the servers in an M f M / n  system to be heterogeneous we arrive at the 

system in Figure 1.2. In this system, the controller chooses between utilizing a server 

or not when a server becomes idle, or when an arrival occurs. In certain situations, it 

may be advantageous to wait for a faster server to become idle instead of immediately 

joining an idle slow server. 

Larsen and Agrawala [26] conjectured that with two servers an arbitrary customer's 

mean sojourn time is minimized by threshold policy. A threshold policy is one in which 
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- •  M  M i l l e d  Q "  

Figure 1.2 A scheduling problem 

the slow server is put into service when the queue grows sufficiently large. Lin and 

Kumar [28] and VValrand [53] proved this conjecture. Lin and Kumar also give a closed-

form solution to compute the cost for a given threshold. Kumar and VValrand [25] 

find the individually optimal policy with any number of servers. Shenker and VVeinrib 

[42] evaluate some heuristic policies using simulation. Sobel [44] proves that routing the 

customers to the fastest available server is the optimal policy that minimizes throughput 

when there is no waiting room. This result cannot be extended to non-exponential service 

rates as shown by a counterexample with two servers in Seth [41]. Xu and Shanthikumar 

[61] impose an admission control on this system, rather than a scheduling control, and 

show that when the number in the system reaches a threshold, the incoming customers 

will be rejected to maximize the expected discounted or long-run average profit. In 

another related paper, Xu [59] applies both admission and scheduling controls. These 

two papers do not use dynamic programming techniques, but instead define a dual 

problem and explore the problem from an individual's point of view whose behaviour 

is the socially optimal policy for the primal. This approach allowed Xu to derive an 

approximation for the threshold in the two-server scheduling problem. Rosberg and 

Makowski [38] show that for the case with multiple servers, and with small arrival rates, 

the optimal policy is from the class of optimal policies that minimize the expected flow 
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time for a system with fixed population and no new arrivals. With no new arrivals the 

optimal policy is known to be of threshold type. 

1.4 Organization 

In Chapter 2 we formally introduce the problem we have worked on. We also give 

several formulations for the problem. In Chapter 3 we discuss our methodology. W^e 

give related computational results in Chapter 4. Chapter -5 consists of several heuristic 

methods that are useful for very large problems. We summarize, and suggest some 

further research in Chapter 6. Appendix A is a formal discussion of MDP techniques. 

Appendix B discusses a resource allocation problem from our research. 
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CHAPTER 2 ROUTING WITH DEDICATED ARRIVALS 

In this chapter, we will first introduce a problem that will be the basis of the later 

chapters. We will also discuss several formulations of the problem. 

We denote our problem by RWDA (routing with dedicated arrivals), see Figure 2.1 for 

an example. In this routing problem, there are several servers in parallel with possibly 

different service rates. Each server has its own infinite queue. Service times at each 

server are distributed exp(^, ). Let m be-the number of the servers. The state of the 

system at any time can be described with a vector n = (ni, n2,..., nm} vvhere n, denotes 

the number of people in front of server i plus the one in service. 

There can be as many as m + 1 different arrival processes to the system. For each 

server i there is an arrival stream of customers that must be served at server i. These 

arrivals follow a Poisson process with rate A,-, A,- > 0. Note that we allow A,- = 0. There 

is also a general stream of arrivals following a Poisson(Ao) process with Aq > 0. These 

arrivals may be served at any of the servers. When a general arrival occurs, it is assigned 

to a queue by the controller. Jockeying is not allowed, that is once a customer has been 

assigned to a queue, it cannot join another queue. The controller knows which state 

the system is in at any time. We also assume that the customers are served in a FIFO 

manner. 

There are many goals the controller may have. In this work, we will focus on the 

goal of minimizing the average number of customers in the system, L. To that end. the 

controller finds a policy: A policy is a rule that for each time point and each state of 

the system dictates what decision to make. The decisions in our problem are to which 
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Figure 2.1 Routing with dedicated arrivals (RWD.A.) 

queue a general arrival is sent. The controller uses a stationary policy, i.e. its decisions 

in a state do not change with time. It is sufficient to only consider stationary policies 

to find an optimal policy, see for example [50]. For this reason, we mean a stationary 

policy whenever we use the term policy from now on. 

In the literature, typically, the average waiting time of a customer in the system, W. 

is minimized. L and W are related to each other by the famous Little's law which says 

L = XefflV, where Ae// is the effective average arrival rate to the system. The effective 

average arrival rate to the system is the average rate at which the customers enter the 

system. There could be a difference between the arrival rate and the effective arrival 

rate if for some reason some of the customers do not enter the system. In the above 

system -if no customers are lost- this average effective arrival rate is equal to the sum 

of all arrival rates, that is Ag// = many cases, minimizing L is equivalent 

to minimizing W by Little's law. In the literature, however, it is incorrectly stated that 

minimizing W is equivalent to minimizing L. Because the formulation for minimizing IF 

is much more difficult than minimizing L, to minimize W researchers usually minimize 

L. However, there are systems where this equivalence does not hold. One example of 

that is our system with finite buffers. We will explain this further later in this chapter. 
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The problem we have described is a basic component of many models that arise 

in routing or load balancing problems in different settings such as computer networks, 

or manufacturing systems. For example, our servers may represent CPU's or printers. 

While some jobs directly go to these servers, some jobs can be processed by any of them. 

A controller decides to which server a new-coming general job goes. 

Our problem has not been solved in the literature. A few researchers have used ded­

icated arrivals, but they have looked at different problems: Ni and Hwang [33] consider 

a class of probabilistic load balancing problems, i.e. the controller randomly assigns the 

general customers to the servers with some given probabilities for each server. Ni and 

Hwang determine the optimal set of probabilities from among all possible probabilities 

to optimize the average waiting time. They also claim to have the closed form solutions 

for the optimal probabilities. Their results are incorrect, but were later corrected by 

Bonomi and Kumar [4] when solving a problem that arose in another context. They de­

velop adaptive load balancing methods for a problem with the same layout as in RVVD.A. 

but where the load parameters (arrival and service rates) are not known. In Appendix B 

we give a simpler derivation of the above-mentioned formulae. These formulae play a 

critical role in our methodology, which will be described in Chapter 3. 

2.1 Semi-Mcirkov Decision Process Formulation 

A common approach to modeling a problem such as the RWDA is to use a semi-

Markov decision process (SMDP). 

In an SMDP model the system is observed at random points, decision epochs, and the 

state of the system is determined. .A.fter this determination, an action (decision) is taken 

and costs are incurred as a result of this action. These costs could be either lump sums 

that incur at discrete time points or costs incurred continuously in time with some rate. 

.After the action has been decided about, the system stays in that state for a random 



www.manaraa.com

14 

amount of time, and then makes a transition to another state with some probability 

that only depends on the state now and the action that has been taken. Some other 

Markovian properties are also satisfied: The time until the next decision epoch does not 

depend on the past history of the system but only on the state the system is in now and 

the action that is being taken. The same is true for the costs. 

If we only consider the times where the controller actually makes a decision (an 

arrival of a general customer) the problem by definition is not exactly an SMDP. In 

between the decision epochs the system may have many state changes via dedicated 

arrivals or departures. This, on the other hand, affects the cost structure. 

However, it is not difficult to change the formulation so that this is a SMDP. We 

model the time of every state change, an arrival or a departure as a decision epoch. With 

this formulation, at any decision epoch that does not correspond to a general arrival, 

the controller has only one action available, that of doing nothing. The controller is only 

needed when a general arrival occurs in which case the action to be taken is to assign 

the customer to one of the queues, a = 1,..., m. 

There are three main techniques for solving MDPs: Policy iteration (PI), value itera­

tion (VI) and linear programming (LP). These methods can only be implemented when 

the state space is finite. Our state space is {(ni, ̂ 2? • • • ? «m) : 0 < ni < oo,...,0 < 

Ttm < oo} which is obviously not finite. A reasonable approach to get around this is to 

solve the related finite buffer problem which has the state space {(ni, ng,..., n^) : 0 < 

<^1 ^ iVi,..., 0 < Tim ^ The finite buffer problem will be referred as RWDA,^. 

As mentioned above, one important difference between RWDA and RWDA,^ is that 

minimizing W is no longer the same as minimizing L. Because of the finite capacity, 

some customers will be rejected when the system, or some of the queues are full. This 

affects Kff- The fullness of the system, on the other hand, is dictated by the policy 

the controller is using. For example, on one extreme, with a policy such as "send to the 

slowest server"' many customers cannot enter the system. Hence, the effective arrival rate 
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and a policy are directly related. This, of course, means that a policy that minimizes 

W does not necessarily minimize L. In our work we also examine how the value and 

the solution of RWDAy^ change as iV is changed. In the literature, it is often incorrectly 

stated that minimizing L is equivalent to minimizing W for problems of this type (see 

for example [47]). As stated earlier, our goal is to minimize L. 

Let Ti be the average holding time in state i .  The average holding time of a state is 

the average time until some event changes the state of the system. This can happen two 

ways, either an arrival of some kind occurs, or some server finishes serving a customer. 

Therefore, the holding time in a state is an exponential random variable with average 

holding time 

T = i • m m ' 

t=I 1=1 
n, >0 

When the system is full, nothing but departures can occur. 

When the system is in state i, it incurs a cost at the rate of the number in the system 

at that state. On average, each visit to a state will have a cost that can be found by 

multiplying the total number of people in state i by the expected time you spend in 

state i, Ti. We denote this average cost in state i by c,-. 

The probabilities for state changes are straightforward to find. Let n,+ = {ni,..., n,H-

l,...,n^}, and n,-_ = {ni,...,n, - Then, 

Pn,rl,+ (o) — 

^  r f i  a  ^  Z ,  U i  <  N i  

Ao+ ^ A,+ ^ /X, 

ist 1=1 
ni<iVj n,>0 

m m ^ /t, ^ iv, 
Ao+ ^ 

i=l t=l 
n, <Ni n, >0 

Pn,n,_(fl) — m m n,' > 0. 

tsl t=l 
ni<JVi n,>0 
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In the above equations the numerator is the rate at which a particular event happens. It 

is well known that the minimum of exponential random variables is another exponential 

random variable. This new exponential random variable's rate is the sum of all rates. 

Therefore, the denominator gives the rate at which an event (any) happens in a state. 

A very important characteristic of this problem is that the possible number of state 

changes at any state is not that many. There are + 1) total states, but from 

any state there are at most 2 *  m  states which are possible to go to. Either m types of 

arrivals, or m departures can occur. For some states, the number of choices are even 

more limited. This feature will be very useful when designing a methodology which we 

will discuss in Chapter 3. 

2.2 Other Formulations 

Our methodology, which is a modification of PI, uses the above formulation. When 

using the other methods, different formulations must be used. 

2.2.1 Value iteration formulation 

The VI algorithm requires a discrete-time MDP (DMDP) in which the times between 

the events are fixed. However, in the previous formulation this does not hold true jis 

the decision epochs are separated from each other by transition times which do not 

have identical rates. In some states, not all the events are possible, e.g. there can 

be no departure from an empty system. To make the transition rates the same, we 

allow transitions from a state to itself, and let the transition times have the same rate. 

Thus, the SMDP model can be converted to a DMDP model by the following data 

transformation ([40]). 
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The actions and the states stay the same. Let 

-^0 + 
1=1 1=1 

Then, the new costs = c,/2}. and the new probabilities are found by 

'  ,  .  Y I P I J I ^ )  J  ^  ̂ 
P i j i a )  = < ' , 

f ; P i j{ a )  +  ( l  -  i )  j  =  i .  

The new formulation has the same class of stationary policies as the original model 

(see [50]). Also, the average costs per unit time are the same for each stationary policy 

in both models. 

In this formulation, the expected time until the next decision epoch is 

1 
m m 

1=1 t=l 

For the implementation of the VI algorithm refer to .A.ppendix A. 

2.2.2 Linear programming formulation 

Here we will give a general LP formulation. In .Appendix A. we discuss another 

LP formulation (in fact, both formulations are duals of each other). This one is useful 

because it gives the steady state probabilities for when the system is in state i and action 

a, a = 1,..., m, is made. The actions are again sending the customers to a queue. Let 

Ui(a) = Xi{a)/Ti{a) where x,(a) is the long-run fraction of decision epochs at which the 

system is in state i and action a is taken. S denotes the set of all states. Note that the 

state space is larger than the state space we have defined for use in our methodology. It 

can be described with a vector {(nt, ̂ 21 • • •, "m, a) : 0 < rzi < iVj,..., 0 < 1 < 

a  <  m } .  ^4(2) stands for the set of actions when one is in state i .  
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Minimize 

S E Ci{a)Uia 
ieS ae.4(:) 

subject to 

" i «  " U S  P i j i ^ y ^ i a  = 0 ,  i  €  / ,  
a6.4(j) i65 ae.4(i) 

Z XI "'•» = 
i€5 a6>l(j") 

Uia > 0 Vi,Va. 

The objective function is to minimize the long-run average cost per unit time. The first 

set of constraints is similar to the balance equations while the last constraint requires 

the fractions u,a to add up to 1. 
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CHAPTER 3 A NEW METHODOLOGY 

We have introduced a routing problem with dedicated arrivals in Chapter 2. In 

this chapter, we give a methodology which is at least as good and in most cases better 

than the current techniques for solving this type of problem. For a detailed description 

and comparison of standard techniques please refer to Appendix A. Both standard 

policy iteration and LP involve simultaneously solving a system of linear equations at 

each iteration -note that iterations for PI are different than those for LP- which is 

computationally burdensome. In general, VI is considered the best method to use for 

large systems because it avoids solving a system of linear equations. We overcome the 

shortcomings of the standard PI with several changes to the algorithm. Our methodology 

makes three major changes to the standard Pl-method: 

1. It uses iterative methods in solving the system of linear equations. 

2. It takes advantage of the sparsity in our problem. It also allocates the state space 

cleverly. 

3. It finds an easy-to-compute initial solution. 

We use our methodology to solve the RWDA problem, but this technique can be 

used to solve many other controlled QN problems and SMDPs in general. 
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3.1 The Standard Pl-algorithm 

In order to discuss our methodology' we must first describe PI in more detail: PI 

begins with an initial policy, which can be any policy. This policy is evaluated, and 

then based on the evaluation an improved policy is developed. These evaluation and 

improvement steps are then iterated until an optimal policy is reached. It is well known 

[50] that this procedure will reach an optimum in a finite number of iterations. The 

evaluation step consists of calculating what are known as relative values, Vi{R), for a 

given policy R. The relative values give a relative measure of the effect of starting at 

s t a t e  i  o n  t h e  t o t a l  e x p e c t e d  c o s t s  u s i n g  t h e  p o l i c y  R .  T h e  d i f f e r e n c e ,  V j { R )  —  V i { R ) .  

has an economic interpretation: It represents the difference in total expected costs over 

an infinitely long period of time by starting in state i rather than in j when using the 

p o l i c y  R .  

Let g { R )  be the average cost (in our problem L )  for a given policy R .  I  denotes the 

s e t  o f  a l l  p o s s i b l e  s t a t e s ,  a n d  . 4 ( i )  s t a n d s  f o r  t h e  a c t i o n  s e t  a v a i l a b l e  i n  s t a t e  i .  R { i )  

denotes the action at state i with policy R. Now, the standard PI algorithm can be 

given using the notation from Chapter 2 as follows: 

1. (initialization) Choose a stationary policy R .  

2 .  (value-determination step) To compute the average cost g { R ) ,  and the relative 

values u,•(/?), i € /, for the current rule R, solve the following system of linear 

equations for its unique minimum: 

V i i R )  =  C i - g{ R ) T i  +  Y ^ P i j{ R i i ) ) v j i R ) ,  i  6 /, (3.1) 
j e r  

Vr{R)=0, (3.2) 

where r is arbitrarily chosen. 
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3. (policy-improvement step) For each state i  determine an action a, that gives the 

minimum in 

The improved policy is the one which applies the actions that yield the minimum 

in the above equation for each state. 

4. (convergence test) If the new policy is the same as the old one, stop. Otherwise 

replace the old policy with the new one, and go to the value-determination step. 

The bottleneck of this algorithm is the value-determination step where for a given 

policy a system of linear equations has to be solved for the relative values and the 

average cost. Assuming that the queue capacities are all iV, the number of equations 

and unknowns is equal to (iV -|- 1)'" + 1. There are two problems that make this step 

computationally burdensome: Traditional techniques like Gaussian elimination to solve 

for systems of linear equations are not time-efficient. Moreover, with our problem the 

storage requirements grow very quickly. Thus, the memory limitations severely affect the 

size of the problems that can be solved using traditional methods. Based on these facts, 

many researchers use VI since it does not involve solving a system of linear equations. 

Our methodology is a new approach to perform PI which drastically reduces the amount 

of work done in the value-determination step. 

3.2 Calculation of Relative Values 

In this section we will discuss the value-iteration step in more detail, and show how 

the computation of the relative values can be improved. 

In the value-determination step, the linear equation for state i  can be rearranged as 

mm 
a€.4(i) 

- V { { R )  - g { R ) T i  +  ' ^ P i j i R { i ) ) v j { R )  = -c.-, (3.3) 
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Vr{R) = 0. (3.4) 

The total size of the system is 

m 2 

n i ' v . + 1 ) + 1  
Li=l 

where + 1) is the total number of relative values (one for each state). We also 

need to compute the average number in the system. As mentioned earlier, one of the 

relative values is arbitrarily set to zero. 

Letting x be the unknowns of the system, that is the relative values - v { R ) -  and 

the average cost g{R) {= L of a. given policy /?), we can write the above system of 

equations as Ax = 6 in matrix-vector form where the entries of .4 are the corresponding 

coefficients of v{R) and g{R). Using this notation, PI results in a sequence of matrices 

.4o, .4i,..., .4/ and a sequence vectors xq^xi^ ... ,xj satisfying 

The main work in PI is calculating the sequence xq, xi,..., x/. The policy Rk+\ is 

determined from the policy Rk and the vector xjt. .4^+1 is then determined from Rk+i-

This suggests that the vectors xo,xi,...,x/ are closely related to each other, which 

happens to be the case. Our approach is to take advantage of this information. 

If one uses Gaussian elimination, the above-mentioned observation does not bring 

any gain because in Gaussian elimination every system has to be solved independently of 

each other. We use the so called iterative methods to take advantage of this observation. 

Next, we will discuss briefly how to solve a system of linear equations, and how we 

take advantage of the way iterative methods work. 

3.2.1 Solving a system of linear equations 

Perhaps the best known method for solving linear systems is Gaussian elimination 

(with partial pivoting). This is a direct method which is very robust, but very time-

A k X k  = b .  (3.5) 
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inefficient in solving large systems. In fact, to solve n equations simultaneously, one 

needs computation time in the order of n^. It also requires a lot of memory, and even 

for small systems in our problem it will perform poorly. This Weis also an obstacle in 

the work of other researchers. 

Another class of methods is iterative methods. These methods repeatedly improve 

an approximate solution until it is accurate enough. Suppose you want to solve the 

system Ax = b which has the unique solution x'. Iterative methods involve finding a 

sequence ^o, Ci,..., 2/ with —>• x'. The user only needs to supply a routine that will 

compute a vector y given the approximate solution zi by using y = Azi. If y is close 

enough to b then the algorithm is terminated. 

Thus, the way the iterative methods work allows us to use the observation we made 

about the dependence of relative values in consecutive iterations of PI. Once, an iteration 

k of PI has been completed we have a solution, Xk, for the system of linear equations. 

AkXk = b. In iteration A; + I of PI, we want to find Xk+i which is close to Xk- Therefore, 

we can apply the iterative method in {k + l)th value-determination step starting with 

X/-. 

There are different types of iterative methods. Stationary methods are older but they 

are not as effective as non-stationary methods. An iterative method can be expressed as 

^/+i = Bizi 4- hi, 

where Bi and hi are determined depending on what method one is using. In the sta­

tionary methods there are no changes to Bi and hi from one step to another. Jacobi. 

and Gauss-Seidel methods are probably the best known stationary methods. The nice 

thing about the stationary methods is that they are easy to implement. Unfortunately, 

they did not converge for many instances of our problem. The non-stationary iterative 

methods, on the other hand, use the information such as residuals that is obtained at 

each iteration to compute constants for the next step. We are not going to overview 
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all these methods in detail. For more information we refer the reader to Barrett et al. 

[3], and Hackbusch [11]. Only recently, Stewart published a book [45] that discusses 

the use of these iterative methods in the numerical solution of Markov chains. It is also 

important to incorporate the iterative methods into the PI algorithm. 

3.3 Sparsity and State Space Allocation 

The previous discussions motivate the use of iterative methods in the PI algorithm. 

The limitation of computer memory poses another obstacle in solving a system of linear 

equations. The number of states grow very quickly (hence the transition matrices for our 

linear systems) with the number of queues and queue capacities. Table 3.1 illustrates 

how the number of states grows for our problem. 

Table 3.1 The number of states for the routing problem 

^ queues (30 each) # states Queue capacity # states (3 queues) 
2 961 30 29,791 
5 28,629,151 60 226,981 
10 w S * 10" 100 1,030.301 

Now consider a two-queue case. From any state there are at most four transitions 

possible. An arrival can be assigned to either of the queues, or a departure can occur from 

any of the queues. When the number of queues increases, it is clear that the percentage 

of the actual transitions to the whole state-transition matrix becomes smaller. In PI, 

the equations (Howard equations) that need to be solved are of the form 

- V i [ R )  -  g { R ) T i  +  =  - Cm i  6 / .  
J e i  

One of the relative values is chosen arbitrarily and set to zero. For each row in the .4 

matrix, there are at most 2 * m + 1 nonzero entries out of ni^i(^^i + 1) + 1 total entries. 

Therefore, out of (ni^i(-^i + 1) + 1)^ entries, at most (2 * m + l)(ni^i(-'^i + 1) + 1) are 

nonzero. 
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With two queues, and queue capacities of 30, in every row there are at most 5 

nonzero entries out of 962 entries. That corresponds to a density of at most 0.5%. If 

queue capacities are increased to 100, the density drops to at most 0.05%. 

In general, if a matrix has a density which is less than 2 or 3% sparse it is considered 

good. Sparse techniques tremendously reduce the amount of storage and the amount of 

computational work. This seems to be ignored in the literature. For a general SMDP. 

PI is not practical. However, for controlled queues, by using sparse techniques it is. 

Some researchers set the queue capacities to the same number (see for example [24]. 

When the service rates are different, the queues are not expected to be equally full with 

the optimal policy. Hence, some states that are allowed using equal queue capacities 

are visited with a very small probability. A more reasonable approach is to give the 

faster servers more waiting room because they are expected to be utilized more often 

than the slower ones. There is no rigorous way of finding the buffer capacities. However, 

allocating them proportional to the service rates helped in improving the efficiency of 

our algorithm quite significantly. 

3.4 Initial Solution 

In general, PI picks an initial policy and calculates the relative values for it. There­

fore, the initial values, xq, are calculated from scratch as opposed to Xi,..., j/. We get 

around this by picking an initial policy in which we already know what the solution vec­

tor is. Our initial solution vector comes from a Bernoulli-splitting policy which we will 

discuss in this section. The relative values and L for Bernoulli-splitting can be obtained 

very easily. 

The Bernoulli-splitting policy splits the incoming arrival stream among the queues 

with probabilities, based on the arrival and service rates. After that, the 

queues behave as independent M/M/1 queues because addition (or splitting) a Pois-
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son arrival creates yet another Poisson arrival. The optimal splitting probabilities are 

the subject of Appendix B. Figure 3.1 will make the idea of Bernoulli-splitting clear. 

The general axrival stream is split into m separate Poisson arrival streams with rates 

PiXq, ... The overall arrival to queue i is another Poisson process with rate 

+ Pi^O-

P i ^ o  

P 2 X 0  

o 
o 

/^1 

Pm O' 

Figure 3.1 Bernoulli-splitting 

An M/M/1 queueing process can be looked at as a very straightforward SMDP with 

two possible decisions at each decision epoch, namely join the queue (if arrival) or do 

nothing (if departure). Once we have the relative values for the single queues, the 

relative values for the Bernoulli-splitting process can be found by adding them up using 

the appropriate probabilities. 

Lemma 3.1 For an M/M/1, the relative values can be expressed as 

n { n  + 1) 
Vn = -W, 

with i;o = 0 and W = l/(/z — A) where A and p, are the corresponding arrival and service 

rates for the M/M/1 queue. 

Proof. With a single queue there are two events possible, an arrival or a service 

completion. An arrival takes the state n to state n 4- 1, while a departure changes n to 
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n — 1. The Howard equations become 

n  L  \  f j .  
= "r~~~ T~~ h Y~j ^n+l + T~~~ '^n-l-

A fj, X n X fjL A-f-// 

L for an M/M/1 queue is found by A/(/x — A). The lemma follows by substitution. • 

L for Bernoulli-splitting can be expressed as 

^ Pt Ao + A," 

PiAq A,' 

which is the sum of M/M/1 formulae for L. 

Now, we have a policy (Bernoulli-splitting) and an easy way to evaluate that policy. 

By applying a policy-improvement step -which does not pose an important computa­

tional burden- we can obtain a better policy. In the policy-improvement step the basic 

idea is to minimize for each state n the difference in total expected costs over an infinite 

time horizon. This is accomplished by taking a different first action, a, than what the 

Bernoulli-splitting policy, Rb, dictates. After the first action Bernoulli-splitting is used. 

D e n o t e  t h i s  d i f f e r e n c e  ( J ( n ,  a ,  R B ) ,  a n d  t h e  p r o b a b i l i t y  o f  s e n d i n g  a  c u s t o m e r  t o  q u e u e  j  

w i t h  t h e  B e r n o u l l i - s p l i t t i n g  p o l i c y  p j .  T h e n  f o r  e a c h  s t a t e  n  a n d  a c t i o n  a  =  k  

m  

S { n , a , R B )  = YLpA^kirik) ~  D j i n j ) ]  +p k * 0  
j=i 
J ^ k  

= -flPjDjirij) + Dkirik), 
i=i 

where D j { n j )  is the difference in total expected costs over an infinite time period by start­

ing with rzj + I customers in queue rather than with nj customers. The summation term 

in the final equation does not depend on the action a. Hence, the policy-improvement 

step of PI is only 

min Dk{nk). 
k — l  m  

The difference Dk{nk) for each queue k  is the difference between the relative val­

ues, Urifc+i and Vni^. As can be seen by the above expression for 5{n,a,Ro), we don't 
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need to find the relative values for the Bernoulli-splitting policy to perform the policy-

improvement step. Looking at the impact of a new arrival on individual queues sepa­

rately suffices. 

At this point we will give the algorithm we propose, and later we will discuss some 

other important issues related to the algorithm. 

Let Xki be the approximate solution vector to Equations 3.5 at the kth iteration of 

PI, and Ith iteration of the iterative method. Furthermore, let Xki = {vki{Rk), gici{Rk)}, 

where Vki{Rk) is the relative value vector in iteration k of PI, and iteration I of the 

iterative method for a given policy Rk- gki{Rk) is the respective average cost (average 

number in the system). We will also let Vki{i, Rk) denote the entry of the relative value 

vector for state i. Xkf stands for the final solution vector in the kth iteration of PI. 

1. (initialization) Choose a stationary policy Rq using a one-step policy-improvement 

over Bernoulli-splitting policy. Set uoo(Ho) = y(Bernoulli), gooiRo) = Z^(Bernoulli), 

and k = 0. 

2. (value-determination step) To compute the average cost gkf{Rk)i and the relative 

values Vkf{Rk) for the current rule Rk, solve Equations 3.5 using a non-stationary 

iterative method. 

3. (policy-improvement step) For each state i determine an action a,- that gives the 

minimum in 

The improved policy, Rk+i, is the one which applies the actions that yield the 

minimum in the above equation for each state. 

3.5 The Algorithm 

mm 
ae.4( i )  
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4. (convergence test) If Rk+i is the same as Rk, stop. Otherwise, find At+i by only 

changing Ak for the rows where Rk+i is different than Rk- Let Rk = Rk+i, k = 

k+l, and go to the second step. 

3.5.1 Other computational issues 

Now we will discuss some aspects of the algorithm we also deem important: 

• Since the policies in PFs consecutive iterations are not that much different, it is 

possible to increase the speed of the algorithm by not writing the coefficient matri.x 

from scratch during each value-determination step. Instead, the matri.x is updated 

during the convergence test step when the old policy is compared to the new one 

to check convergence. 

• .A. closer look at the policy-improvement step will also bring some improvement. 

Since the costs c,- and the average holding times T",- are not dependent on the action 

taken the equation can be written differently, 

where pij{n,Rk) is the rate at which a transition from state i  to j  occurs under 

policy Rk- Then, the comparison reduces to 

• We mentioned to use a non-stationary iterative method to solve the linear system. 

That is because stationary methods such as Jacobi, Gauss-Seidel may not converge 

for our problems. It is well known that if the system is strictly diagonally dominant 

then the Jacobi and Gauss-Seidel methods converge for any starting value. .A. 

system of equations in which the coefficients satisfy 

mm 
ag.4(i) 

mm 
a6.4(i) 
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is said to be strictly diagonally dominant. Our equations, 

-Vkiii, Rk) - gki{Rk)Ti + Rk) = -c,, 
jei 

never satisfy this condition. This can be seen easily by recognizing that the abso­

lute value of the diagonal element is 1, and since the sum of probabilities is equal to 

1 as well, this condition is never satisfied. This does not mean that the stationary 

methods will not converge, but our numerical e.xperience has shown that for our 

type of problems, stationary methods do not always converge. 

3.6 Evaluation of a Policy 

Often, one is interested in how a particular policy will perform against the others. 

VI and LP cannot be used to evaluate a policy. Both of these methods yield an optimal 

policy only when they are finished. Our methodology and traditional PI, on the other 

hand, evaluate a policy at each value-determination step. Therefore, they are useful to 

evaluate a given policy which is a major advantage of this approach. 

Of course, once a policy is given the underlying process can also be analyzed as a 

continuous-time Markov chain which can be solved for its stationary distribution. Once 

the stationary distribution is obtained, the average number in the system can easily be 

found. Resnick [36] gives a numerical way of solving for the stationary probability vector 

r f :  

r 7 '  =  ( I ,  . . . , l ) ( A  +  O i V £ ) - ' ,  

where .4 is the generator matrix of the continuous-time Markov chain, and O N E  is a 

matrix with all of its entries equal to I. Once we have the stationary probability vector, 

we can compute the average number in the system which we are interested in. With 

our Pl-based methodology the stationary distribution is not found. However, we have 

already seen that it can be used to find the average number in the system very efficiently. 
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On the other hand, the sparsity of the systems is lost by using the above formula to find 

the stationary distribution vector. Hence, it is not an efficient way of finding L for the 

size of problems we are solving. 

Simulation is also an option to evaluate a policy. In this work, however, we focus on 

exact methods. 



www.manaraa.com

CHAPTER 4 COMPUTATIONAL RESULTS 

We have written our programs in C/C++. All the programs were run on DEC 

Alpha workstations (100 MHz, 32 MB RAM). The public software LASPack [43] has 

been incorporated into our programs to solve the systems of linear equations. Our 

iterative method of choice was the biconjugate gradient stabilized method. We also 

needed to precondition our linear systems so that they had nicer convergence properties. 

A preconditioner is a matrix that transforms a linear system into one that has the same 

solution and nicer properties. To our luck, the so called symmetric successive over-

relaxation preconditioner which does not require much extra work was enough in our 

experiments. 

In the tables the optimal results correspond to the average number of customers in 

the system, L. p is the traffic intensity which is the ratio of the total arrival rate to the 

total service rate. 

Some researchers worked on RNDA where there are no dedicated arrivals. We sum­

marize their results to show the size of problems that could be solved previously. Kr-

ishnan [24] has developed a heuristic method for the RNDA problem, and compared it 

to the almost-optimal solution which he has obtained using PI. He could only report 

results on two-queue cases, and those only for cases where the capacity on each queue is 

30. That corresponds to 961 states. Banavvan and Zahorjan [2] also used PI to evaluate 

a heuristic rule. Their results were limited to about 1000-1500 states which they claim 

is a "reasonable limit". As opposed to Krishnan, they solved problems with up to four 

queues but they could only allow at most 10 people in the system! With a high traffic 
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intensity their system will be full very frequently, and is not a good approximation to 

the actual uncapacitated system. 

Table 4.1 demonstrates how the size could affect the quality of the solution. As a 

rule of thumb the quality of the solution values is indicated by a larger number since 

it reflects the true value of the uncapacitated system better. This, however, may not 

be true in all the cases. For example, when one queue is full the arrivals are sent to 

the other queue. On the other hand, with an uncapacitated system the optimal policy 

could have called for sending those customers to the queue that became full in the finite 

capacity problem. Nevertheless, in most of the cases the rule, ''the larger the value the 

better", applies, and we will use this in our discussions. 

In all of the ca^es in Table 4.1, there is quite a significant difference between the 

solutions when the queue capacities are increased from 30 to 50 and 75. Compared to 

the values with 30, solutions for 50 increase more than 30%, whereas with 75 more than 

70%. These increases are expected: When the system capacity is comparatively small, 

more arrivals are rejected. That causes the average number in the system to be smaller 

for smaller systems. As the capacity is increased, more customers can enter the system, 

and L increases. The differences will not be this dramatic with lower traffic intensities. 

However, the high traffic intensity cases are the more interesting ones to look at for 

practical purposes. 

Table 4.1 The effect of queue capacities on L. p = 0.98, RNDA 

/zi = 2 m = 2.5 = 5 

Capacities ^^2 = 1 A/2 = 1 = 1 

10 9.7617 9.7798 10.0664 
30 24.5074 24.4970 24.5036 
50 34.6273 34.6151 34.5974 
75 42.2980 42.2843 42.2641 

100 46.3250 46.3105 46.2891 
150 49.2003 49.1849 49.1632 
200 49.7771 49.7617 49.7404 
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We mentioned that Krishnan set both queue capacities to 30. We compared how the 

solution values change with different queue capacity combinations. The comparisons 

were made against keeping the queue capacities the same. The other queue capacities 

give about 10, 20 or 30 % decreases in the state space compared to the equal-capacity 

cases. We also tried to keep the queue ratios proportional to the service ratios. As one 

can see from the Tables 4.2- 4.4 the quality of the solutions are better even with 10% 

decrease in the state space. As the first server becomes faster, even a larger reduction 

in the state space brings about better solutions. This is because the fcister server will be 

utilized more the faster it is, and therefore, it needs more buflfer. One exception to our 

approximate rule can be seen from Table 4.4 and (29,2) case. When the second queue 

is full (which must happen pretty often with a queue capacity of 2), the customers are 

forced to join the first queue. The first queue cannot handle all the incoming traffic which 

increases the average number in the system. Then, the solution value of (29,2)-system 

is a poorer indicator than the values of other buffer allocations, e.g. (26,3). 

Table 4.2 The effects of allocating the state space on L. p = 0.98, 
Hi = 2, /U2 = 1, RND.'^. Numbers in brackets give the capaci­
ties of queues 

Approximate percent reduction in state space 
Base case 10% 20% 30% 
(10,10) 9.7617 

(30,.30) 24.5074 
(50,50) 34.6273 
(75,75) 42.2980 

(100,100) 46.3250 
(L50,150) 49.2003 
(200,200) 49.7771 

(13,7) 9.7462 
(40,20) 24.5074 
(66,34) 34.6273 

(100,50) 42.2981 
(134,67) 46.3803 

(202,101) 49.2354 
(268,1.34) 49.7816 

(12,6) 8.8708 
(38,19) 23.5724 
(62,31) 33.1493 
(94,17) 41.2413 

(126,63) 45.6618 
(190,95) 48.9994 

(254,127) 49.7282 

(11,6) 8.4277 
(36,17) 22.2844 
(59,21) .32.0220 
(89,44) 40.1949 

(118,59) 44.8103 
(177,89) 48.6637 

(2.36,118) 49.6235 

The changes we made in the Pl-method speeds it up very dramatically. It becomes 

even a better alternative than Vl-method. Table 4.5 shows the gain in run-time in PI 

by using the iterative methods instead of the direct methods. Table 4.6 compares the 

CPU seconds for the algorithms. Observe that as the traffic intensity becomes higher 
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Table 4.3 The effects of allocating the state space on L. p = 0.98. 
Hi = 5, IJ.2 = 1, RNDA. Numbers in brackets give the capaci­
ties of queues 

Approximate percent reduction in state space 
Base case 10% 20% 30% 

(10,10) 10.0664 
(30,30) 24.5036 
(50,50) 34.5974 
(75,75 ) 42.2641 

(100,100) 46.2891 
(150,150) 49.1632 
(200,200) 49.7404 

(20,4) 11.4306 
(64,12) 29.0314 

(105,21) 39.1572 
(160,31) 45.7546 
(210,42) 48.3063 
(320,64) 49.6995 
(425,85) 49.8464 

(19,4) 11.0081 
(60,12) 27.9603 

(100,20) 38.2252 
(150,30) 45.0015 
(200,40) 47.9706 
(300,60) 49.6139 
(400,80) 49.8338 

(16,4) 9.7204 
(.55.11) 26.2711 
(95,18) 37.0499 

(140,28) 44.0373 
(185,37) 47.3358 
(280,56) 49.4847 
(375.75) 49.8129 

Table 4.4 The effects of allocating the state space on L. p = 0.98. 
= 10, fj.2 = 1, RNDA. Numbers in brackets give the capac­

ities of queues 

Approximate percent reduction in state space 
Base case 10% 20% 30% 

(10,10) 10.9305 
(30,30) 24.8745 
(50,50) 34.6464 
(75,75) 42.2406 

(100,100) 46.2574 
(150,150) 49.1295 
(200,200) 49.7056 

(26,3) 13.4667 
(90,9) .34.3652 

(150,15) 43.7395 
(220,22) 47.9978 
(300,30) 49.4096 
(450,45) 49.8066 
(600,60) 49.8279 

(23,3) 12.2.396 
(80,8) 31.9658 

(140,14) 42.6649 
(210,21) 47.6418 
(280,28) 49.2182 
(420,42) 49.7882 
(560,56) 49.8263 

(29,2) 14.2905 
(75,8) 30.7775 

(130,13) 41.4231 
(200,20) 47.2215 
(260,26) 48.9432 
(390,39) 49.7552 
(530,53) 49.8251 

Table 4.5 PI with direct vs. iterative methods in CPU seconds. RND.A., 
fii = 2, fi2 = 1, N = 25 

p Pl-direct Pl-iterative 
02 6871 LS 
0.4 455.4 2.8 
0.6 910.6 3.7 
0.8 910.1 4.2 
0.9 910.1 4.6 
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Table 4.6 Modified PI vs. VI in CPU seconds. RND.A., fii = 2, /X2 = 1, N 
= 100 for p < 0.9, iV = 200 otherwise 

p MPI VI-relaxation VI plain 
0.10 74.2 105.6 121.1 
0.15 .32.9 107.5 120.6 
0.20 27.4 107.7 125.4 
0.25 .39.2 95.5 130.2 
0.30 62.7 98.1 135.3 
0..35 88.2 95.1 140.5 
0.40 118.1 106.7 148.5 
0.45 112.3 116.5 172.0 
0.50 134.0 206.2 202.7 
0.55 194.1 242.0 241.6 
0.60 203.9 265.6 292.1 
0.65 .352.5 513.7 360.7 
0.70 302.4 467.4 468.3 
0.75 356.0 506.1 606.3 
0.80 257.8 457.6 849.2 
0.85 47.3.1 553.0 1310.4 
0.90 7786.1 7378.2 13951.4 
0.92 4570.1 12176.0 19024.7 
0.95 5331.8 25882.9 36623.7 
0.98 38526.3 37378.8 96271.5 
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the performance of PI does not worsen eis badly as VPs. This is an important point 

because at low intensities finding a solution to the problem does not pose a difficulty. 

One can use any heuristic policy for low intensities, and because the next arrival will not 

arrive very soon it is very likely that customers in service will leave the system before 

then. Although VI with relaxation may sometimes perform better than our modified 

PI, in most cases our methodology also beats VI with relaxation. The convergence of VI 

with relaxation is theoretically not guaranteed. We actually had some problems which 

did not converge. Moreover, the extra work to find the relaxation factor and update the 

states may make the VI with relaxation slower than even the plain VI if the number of 

states is sufficiently large. 

The run-time of the modified PI is directly related to the total number of iterations 

to solve the systems of linear equations until PI converges. Due to the fact that some 

problems are harder than some others to solve numerically the run-time does not increase 

with the increasing traffic intensity. Table 4.7 illustrates these points. 

A more clever allocation of queue capacities speeds our methodology significantly. 

For example. Table 4.8 shows the difference in run-times for the problems in Table 4.6 

for p > 0.9 with queue capacities (268,134). 

The relaxation factor in the Vl-method also causes an irregular run-time behaviour. 

However, its use helps in reducing the number of the iterations needed in VI. For a 

comparison in the number of iterations needed by Vl-plain and Vl-relaxation to converge 

see Table 4.9. 
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Table 4.7 Modified PI: CPU seconds and of iterations. RND.A., 
y.1 =2. N = 100 for p < 0.9, N = 200 otherwise 

p CPU Total ^ iterations 
0.10 74.2 117 
0.15 32.9 50 
0.20 27.4 41 
0.25 39.2 60 
0.30 62.7 98 
0.35 88.2 140 
0.40 118.1 189 
0.45 112.3 180 
0.50 134.0 216 
0.55 194.1 315 
0.60 203.9 831 
0.65 352.5 576 
0.70 302.4 493 
0.75 356.0 581 
0.80 257.8 420 
0.85 473.1 774 
0.90 7786.1 3208 
0.92 4570.6 1887 
0.95 5331.8 2199 
0.98 38526.3 15919 

Table 4.8 Effects of a more clever state space allocation in CPU seconds. 
RNDA, Hi =2, = 1, iVi = 268, N2 = 134 

P MPI Vl-relaxation 
0.90 2241.9 10145.6 
0.92 1558.2 17319.1 
0.95 1491.6 36804.7 
0.98 1922.6 78780.8 
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Table 4.9 Number of iterations for VI with and without relaxation. N = 
30 

Service ratio P Vl-plain VI-relaxation 
2:1 0.2 220 190 

0.4 333 189 
0.6 731 534 
O.S 2390 671 
0.9 .5783 1171 

2.5:1 0.2 260 274 
0.4 335 271 
0.6 731 360 
0.8 2.390 906 
0.9 5786 1959 

5:1 0.2 460 379 
0.4 531 417 
0.6 749 470 
0.8 2398 1053 
0.9 5805 3122 
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CHAPTER 5 HEURISTIC METHODS 

The state spaces in our problems grow very quickly as it has been demonstrated in 

Chapter 3. Although, the methodology we have discussed in that chapter is useful in 

obtaining the almost-optimal policy efficiently, it will become inappropriate for solving 

these type of problems when the state space becomes sufficiently large. Therefore, it is 

important to develop approximation methods that can be used to find good policies for 

very large systems. Here, we will discuss several heuristic methods that can be applied 

to the routing problem with dedicated arrivals. 

We experiment with several different heuristic methods. 

1. Never queue rule (NQ) 

2. Individual-optimum rule (lOPT) 

3. Separable rule (SR) 

4. Greedy throughput rule (GT) 

5. Hybrid rule (HYB) 

5.1 Never Queue Rule 

This rule sends an arrival to the fastest available server. If no server is available a 

queue with minimal n,is chosen. This rule differs only slightly from the individual-

optimum rule where the service time of the new-coming customer is taken into account. 
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5.2 Individual-optimum Rule 

This rule is widely used as a heuristic for different problems in controlled QN area. 

It minimizes the expected waiting time of an individual after arrival, but ignores the 

effect of a customer's self-interested policy on the other customers. For our problem it 

corresponds to joining the shortest queue. Some researchers use the term the shortest 

expected delay rule which is equivalent to joining the shortest queue in our case. When 

the servers are homogeneous this is the optimal policy. A customer is assigned to a 

queue that satisfies 

Tli + 1 
mm . 

'=1 m Hi 

If there is a tie, the ties can be broken in favor of a queue that minimizes the variance 

(assuming exponential service distributions) 

rii + I 
mm 5—. 

'=^  tJ'i 

5.3 Separable Rule 

In PI, for a given policy one first needs to compute the relative values for each state. 

Then, these values are used to improve the old policy. The bottleneck in this procedure 

is finding the relative values. A candidate for a good heuristic is using a reasonable 

policy -if it exists- that allows finding the relative values without solving a system of 

linear equations , and then doing a one step policy-improvement. 

A policy that makes computation of L and the relative values easy is the Bernoulli-

splitting policy. Therefore, another good candidate for an appro.ximate method is to use 

Bernoulli-splitting as your initial policy, compute its relative values, perform a one-step 

policy-improvement, and stop with the new policy. We have discussed the Bernoulli-

splitting policy and how to improve on that policy in Chapter 3. It was shown that it is 
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sufficient to look at the impact of a new arrival on individual queues separately to find 

the improved policy, hence the name: Separable rule. 

5.4 Greedy Throughput Rule 

This rule maximizes the expected number of service completions before the next 

expected customer arrival. With this rule the server that satisfies 

f  
. max r 

+ A,- + /!{ 

is chosen. 

5.5 Hybrid Rule 

Our experiments indicated that no previous rule has an overall advantage. We suggest 

the following rule as an alternative heuristic method: In any state, the action that is 

picked is the one chosen by the majority of the other rules. We call this rule the hybrid 

rule. 

5.6 Computational Results 

Krishnan [24] worked on the RND.A. problem, and compared his heuristic method 

only to the lOPT rule to measure the performance of his heuristic. However, other rules 

do perform better than his as can be seen from Table 5.1. 

Table 5.2- 5.4 show how the heuristic methods behave for different problems. The 

heuristic rules, in general, give reasonable solutions. In most cases, they are not more 

than 10% above the optimum solution. lOPT and NQ rules do not consider the arrival 

streams at all. For that reason, when the faster server is expected to be heavily loaded 

with dedicated arrivals they perform poorly against GT. GT, since it maximizes the 



www.manaraa.com

43 

Table 5.1 Performance in L for different heuristic methods. Problems re­
ported in Krishnan's paper. RNDA, A/" = 30 

Service ratio P NQ lOPT SEP GT HYB Optimal 
2:1 0.2 0.3773 0.3904 0.3787 0.3773 0.3773 0.3773 

0.4 0.9419 0.9981 0.9511 0.9419 0.9419 0.9419 
0.6 1.9451 2.0610 1.9630 1.9462 1.9451 1.9451 
0.8 4.6594 4.8506 4.6797 4.6584 4.6594 4.6564 
0.9 9.6884 9.9238 9.7054 9.6817 9.6884 9.6774 

2.5:1 0.2 0.3733 0.3660 0.3734 0.3659 0.3659 0.3659 
0.4 0.9410 0.9512 0.9425 0.9412 0.9410 0.9397 
0.6 1.9419 2.0009 1.9517 1.9429 1.9419 1.9419 
0.8 4.6480 4.7993 4.6766 4.6494 4.6480 4.6458 
0.9 9.6724 9.8916 9.7127 9.6791 9.6724 9.6638 

5:1 0.2 0.3967 0.3154 0.3152 0.3152 0.3152 0.3150 
0.4 0.9935 0.8929 0.8832 0.8659 0.8659 0.8656 
0.6 1.9877 2.0484 1.9233 1.8936 1.8871 1.S871 
0.8 4.6771 5.0950 4.6957 4.6264 4.6047 4.6036 
0.9 9.7059 10.3906 9.7724 9.6743 9.6494 9.6336 

number of service completions until the next expected customer arrival, considers the 

arrival streams partially. The SR, to a certain extent, considers the arrival streams 

as well since the optimal Bernoulli-splitting probabilities are also based on the arrival 

rates. The performance of the SR is difficult to assess because it involves a one-step 

policy-improvement. The hybrid rule's performance is also difficult to guess. .Although 

it does achieve the best results in many cases, it may also perform very poorly compared 

to the others in some cases; the behaviour cannot be predicted beforehand. 
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Table 5.2 Performance in L for different heuristic methods. 
jii = 2, fX2 = 1, N = 50 

Ai, A2 P NQ lOPT SEP GT HYB Optimal 
0.5, 0.5 0.4 1.5451 1.5324 1.5.322 1.5451 1..5324 1.-5322 

0.6 2.-5578 2..5.32S 2.6149 2.5704 2.-5578 2.-5316 
O.S 5.3120 5.3141 5.4588 5.3710 5.3120 5.29-55 
0.9 10.4735 10.5005 10.7047 10.5848 10.4735 10.4041 

0.1. 0.1 0.2 0.4266 0.4293 0.4266 0.4266 0.4266 0.4266 
0.4 0.9949 1.0282 1.0062 0.9949 0.9949 0.9949 
0.6 2.0043 2.0910 2.0297 2.0072 2.0043 2.0043 
O.S 4.7271 4.8855 4.7640 4.7328 4.7271 4.7271 
0.9 9.8631 10.0662 9.9061 9.8690 9.8631 9.8-394 

1.0. 0.0 0.4 1.2200 1.2675 1.2164 1.2405 1.2200 1.2164 
0.6 2.2666 2.4390 2.2248 2.2783 2.2666 2.2176 
O.S 5.0980 5.4005 4.9686 4.9586 5.0980 4.9528 
0.9 10.3150 10.6935 10.1177 10.1170 10.31-50 9.9803 

0.4, 0.2 0.4 1.0778 1.0963 1.0860 1.0860 1.0778 1.0778 
0.6 2.1045 2.1729 2.1270 2.1270 2.1045 2.1045 
O.S 4.8537 4.9958 4.8878 4.8862 4.8537 4.8-5-34 
0.9 10.0024 10.1916 10.0475 10.0417 10.0024 9.9361 

Table 5.3 Performance in L for different heuristic methods. 
P-i = 2.5, fJ.2 = 1, iV = 50 

Ai, A2 P NQ lOPT SEP GT HYB Optimal 
0.3, 0.3 0.2 0.6234 0.6189 0.6189 0.6189 0.6189 0.6189 

0.4 1.1913 1.1582 1.1869 1.1589 1.1-589 1.1-582 
0.6 2.2108 2.1859 2.2342 2.2162 2.2108 2.1835 
0.8 4.9418 4.9828 5.0276 4.9644 4.9418 4.9313 
0.9 10.0764 10.1585 10.2249 10.1312 10.0764 10.0389 

0.1, 0.1 0.2 0.4290 0.4178 0.4178 0.4178 0.4178 0.4178 
0.4 1.0006 0.99.33 1.0025 1.0009 1.0006 0.9923 
0.6 2.0083 2.0393 2.0220 2.0105 2.0083 2.0059 
0.8 4.7223 4.8362 4.7657 4.7301 4.7223 4.7223 
0.9 9.8512 10.0.303 9.9201 9.8640 9.8512 9.8327 

1.5, 0.0 0.6 2.3811 2.5294 2.3639 2.3886 2.3811 2.3429 
0.8 .5.2156 5.5720 5.0918 5.0674 5.2156 -5.0513 
0.9 10.4.557 10.9467 10.2365 10.2385 10.4-557 10.0673 

0.5, 0.2 0.4 1.0810 1.0715 1.0825 1.0825 1.0810 1.0708 
0.6 2.1073 2.1289 2.1210 2.1210 2.1073 2.1048 
O.S 4.8478 4.9523 4.8936 4.8649 4.8478 4.8477 
0.9 9.9842 10.1557 10.0659 10.0504 9.9842 9.9240 
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Table 5.4 Performance in L for different heuristic methods. 
Hi = 5, ^2 = 1, iV = 50 

Ai, A2 P NQ lOPT SEP GT HYB Optimal 
0.5, 0.5 0.2 1.1822 1.1628 1.1628 1.1628 1.1628 1.1628 

0.4 1.7955 1.6129 1.6126 1.6282 1.6129 1.6125 
0.6 2.8048 2.5740 2.5972 2.6902 2.5972 2.5719 
0.8 5.4828 5.3888 5.7106 5.5063 0.3856 5.3135 
0.9 10.5892 10.6436 11.0921 10.8258 10.5158 10.4.567 

0.1. 0.1 0.2 0.4691 0..3930 0.3929 0.3937 0.3929 0.3929 
0.4 1.0723 0.9440 0.9308 0.9308 0.9307 0.9302 
0.6 2.0698 2.0651 2.0067 1.9710 1.9613 1.9538 
0.8 4.7584 5.0758 4.80.38 4.7190 4.6801 4.6800 
0.9 9.8826 10.4581 10.0048 9.8822 9.8209 9.8129 

4.0, 0.0 0.8 5.9861 6.7382 5.7438 5.7430 6.0215 5.6285 
0.9 11.3240 12.6557 10.6422 10.7607 11.3543 10.4068 

1.0, 0.2 0.4 1.1.321 1.0268 1.0230 1.0498 1.0230 1.0226 
0.6 2.1.587 2.1241 2.1072 2.0979 2.0617 2.0477 
0.8 4.8739 5.1343 4.9374 4.8932 4.8032 4.80.32 
0.9 9.9835 10.4966 10.1569 10.0883 9.9289 9.8905 
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CHAPTER 6 CONCLUSION 

In this dissertation we have looked at a controlled QN where a controller routed the 

incoming arrivals to parallel queues using state-dependent rules. The queues also had 

dedicated arrivals which could only be serviced by them. We assumed Poisson arrival 

processes, and exponential service times. 

The problem was modeled as an SMDP. We pointed out a misconception in the 

literature about problems similar to ours. We developed a Pl-based exact methodology 

which performed better than the current methods including VI which is widely thought 

as the method to use for large-scale problems. VI with relaxation converges -if at all-

in fewer number of iterations than Vl-plain. However, there could be two problems 

with this procedure; it is not guaranteed to converge, and with sufficiently large state 

space, the extra work involved in Vl-relaxation could actually make it even slower than 

Vl-plain. 

We made several changes to the traditional Pl-method to be able to solve our prob­

lem efficiently. Observing the interdependence of the solutions in consecutive iterations 

of Pl-method made it possible to use the iterative methods in solving our systems of 

linear equations very effectively. Sparsity, a good initial solution, and allocation of the 

state space were other factors that affected the performance of our methodology. Using 

this methodology we solved much larger problems than reported in the literature. Our 

methodology is a candidate to solve other problems efficiently as well. One other advan­

tage of our methodology was to use it to evaluate a given policy efficiently which cannot 

be done with other MDP techniques. 
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We also looked at how several heuristic methods performed on our problem. The 

study Wcis comprehensive, and it included all the heuristic ideas we have encountered in 

the literature that could be applied to our problem. We have used our exact methodology 

rather than simulation to evaluate these methods. No heuristic method has surfaced as 

the best heuristic to use for all instances. In general, however, these heuristic methods 

offer very quick and reasonable solutions to very big problems. This is important since 

with MDP techniques the size of the problems one can solve is limited by the current 

computer technology. 

Part of the research in this dissertation is a first-step in combining PI with iterative 

methods. We have demonstrated that PI is better than VI or LP for solving our problem, 

and we feel that the methodology we have proposed has large room for improvement. 

In our opinion, an iterative method that should be used in solving the systems of linear 

equations that arise in a particular problem should be tailored for that problem. For 

further research, one could pursue developing better iterative methods that take the 

characteristics of our problem into consideration. It is important to make efforts in this 

direction since the other techniques do not promise any more improvements. We also 

believe that this should be the path to take in solving other problems one may encounter 

in controlled QN settings. 
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APPENDIX A GENERAL SOLUTION TECHNIQUES 

Markov decision processes provide a general framework to solve controlled QNs. 

White [55] [56] gives a list of real applications of MDPs. Markov chains can be used to 

model problems when the probabilistic law of motion is fixed. In MDPs, the interest lies 

in the policy that will achieve a certain performance measure the best. Since in practical 

cases the number of policies are finite, one can evaluate each policy using Markov chains 

and then pick the best policy. Often though, this is a very inefficient procedure. Let us 

first give a more formal description of MDPs. We observe a dynamic system at discrete 

points in an infinite time-horizon. Then, the system is classified into one of the finite 

states, and an action is taken. The discrete time points when the actions are taken are 

called decision epochs. The action set is assumed to be finite. An action results in an 

immediate cost (which does not depend on the history of the system, but only on the 

state you are in, and the action you have taken), and with some probability the system 

goes to another state. The probabilities also do not depend on the history of the system. 

If we observe the system in equidistant points than the underlying process is called a 

discrete-time MDP (DMDP). However, in many problems, the times between actions 

are random. Now assume, that the time till the next decision epoch only depends on 

the state you are in and the action you have taken. Such a model is referred to as 

semi-Markov decision process. A semi-Markov decision model can also be converted to 

a discrete-time model. 

In general, an optimal policy does not need to be stationary (a stationary policy is one 

where at any time point the decision taken in a given state remains the same). It could 
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be randomized, too. However, because of the Markovian assumptions, we oaiy need to 

consider the stationary policies. For all practical purposes, the stationary policies also 

satisfy the so called unichain assumption which says that there exists some state which 

can be reached from any other state under a policy. This assumption is needed to prove 

the existence of a stationary distribution for a given policy. 

We will not attempt to review all literature about MDPs. The following books are 

some good access points to literature. Ross [39] discusses the theory for these processes 

in his excellent book, while Tijms' [51] [50] approach is a more computational one. Hillier 

and Lieberman [14] also have an introductory chapter on MDPs. 

There are three general algorithms to solve MDPs: 

1. Policy iteration 

2. Value iteration 

.3. Linear programming 

In what follows we will focus on SMDPs. However, most of the discussions also apply 

to DMDPs. 

Policy Iteration 

Once a policy is fixed, the underlying process is nothing but a continuous-time 

Markov chain. Therefore, in theory we could go through the finite number of poli­

cies, each time solving for the Markov chain, and finally pick the best policy as our 

optimum. However, this turns out to be a very inefficient method most of the time. 

Instead, policy iteration method constructs a sequence of improved policies until the 

optimum is reached. Typically, this method goes only through a few number of policies 

to find the optimum. This method was developed by Howard [20]. The algorithm uses 

the so called relative values, u,•(/?), which give a relative measure of the effect of starting 
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at state i on the total expected costs using the policy R. The difference V j {R) — Vi{R) 

has an economic interpretation: It represents the difference in total expected costs over 

an infinitely long period of time by starting in state i rather than j when using the 

policy R. Other notation we use is 

C i { a )  : the expected costs until the next decision epoch if action a  is chosen in the present 

state i, 

Pi j{ a )  :  the probability of being in state j  in the next decision epoch if action a  is taken 

in the present state i, 

T i { a )  :  the expected time until the next decision epoch if action a  is taken in the present 

state i. 

Now, the algorithm can be given as follows([ol]): 

1. (initialization) Choose a stationary policy R. 

2. (value-determination step) To compute the average cost g{R), and the relative 

values u,•(/?), i G /, for the current rule R, solve the following system of linear 

equations for its unique minimum: 

where r is arbitrarily chosen. 

3. (policy-improvement step) For each state i determine an action a, that gives the 

minimum in 

The improved policy is the one which applies the actions that yield the minimum 

in the above equation for each state. 

Vi = Ci[Ri) - gTi[Ri) + XIp,j(/1,)uj, i 6 /, 
jei 

Vr = 0, 

mjn S Ci(a) " 9 { R ) T i [ a )  +  Y , P i M ) ^ A ^ )  
a6-4(<) 
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4. (convergence test) If the new policy is the same as the old one, stop. Otherwise 

replace the old policy with the new one, and go to the value-determination step. 

Value Iteration 

In VI one avoids solving a system of linear equations. Instead, a recursive solution 

approach from dynamic programming is used, i.e. recursively a sequence of value func­

tions is computed which approximate the minimum average cost per unit time. Here, 

we need to introduce some more notation. Let Vn{i) be the minimal total expected costs 

when n periods are left when the current state is i, and a final cost Vo(j) is incurred if 

the system ends up in state j. The difference Ki(!) — Vn-i{i) will come very close to the 

minimum average cost per unit time for large n. In the algorithm the value function 

V^z) is computed from 

starting with an arbitrarily chosen Vo(2). 

An alert reader must have recognized that in the above recursion relationship the 

random times between two consecutive decision epochs have not been taken into account. 

For the VI method to work for SMDPs, the system is converted into a DMDP and 

then the method is applied. We now will give the algorithm with the appropriate data 

transformation. This transformation is due to Schweitzer [40] (see also the related work 

o f  L i p p m a n  [ 2 9 ] ) .  I n  t h e  f o l l o w i n g ,  0  <  r  <  m i n , - , a  T i { a ) .  

1. Choose Vo(f) such that 0 < Vo{i) < miria {c,(a)/T',(a)} for all i. Set ra = 1. 

2. Compute the functional equations for each i €. I from 

R{n) is the stationary policy that minimizes the right side of the above equation. 

mm 
a64(i) 

V n { i )  =  +  1 - ^  V n - d i ) \ .  
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3. Compute the bounds 

6n = min{V;(i) - Ki_i(j)} , 
jet 

Bn = max {VnU) - Ki-i(i)} . 

Stop with the current policy when 0 < (5„ — 6„) < e6„, where e is a prespecified 

accuracy number. Otherwise, n = n + I and go to the second step. 

The number of iterations in this algorithm can be significantly decreased by using a 

dynamic relaxation factor. This modification to the algorithm is due to Popyack et al. 

[35]. Although the modified method is not guaranteed to converge, it is useful for all 

practical purposes. Only the last step of the previously stated algorithm changes in this 

modified version. In step 3, 

Determine the states m and M such that 

Set, n = n + 1 and go to step 2. 

In case of a tie when determining the states m ( M )  one chooses the minimizing 

(maximizing) state from the previous state if it is a candidate, too. Otherwise, the first 

state that achieves the minimum (maximum) can be chosen. When the relaxation factor 

is used the difference between the value functions from the current iteration to the next 

for the current m and M will be zero. This usually helps in decreasing the difference 

between the new lower and upper bound more quickly. 

V n i m )  -  K . - l ( m )  =  b n ,  V r ^ i M )  -  V;_i(M) = 

Compute the relaxation factor 

u  =  i B ^ - b n ) /  

-  6 „  +  E  [ P m j i R n i m ) )  - pMjiRniM ) ) ]  [ V ; ( i )  -  V n - d j ) ]  
I jel 

For each state i, recompute 

K.(0 = K-l(^•)+u;[K(0 - v;_i(0] 
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Liuecir Programming 

Next, we give a general LP formulation for SMDPs that finds the optimal average 

c o s t  g ' .  

Minimize g  

subject to 

Vi -Yl pij{a)vj + gTi{a) > c.(a), i E I ,  a  e  .4(/), 
J&r 

g  and u,- unrestricted in sign. 

An LP formulation for MDPs was first given by Manne [31]. Several other researchers 

worked on LP formulations including Denardo and Fox[S], Osaki and Mine [34], Derman 

[9], and Hordijk and Kallenberg [16]. 

Comparison of Standard Methods 

The LP and PI methods are related. In fact, PI can be looked at as an LP in 

which more than one basic variable is being changed in every iteration (block pivoting). 

Nevertheless, both of these methods involve simultaneously solving a system of linear 

equations. PI usually converges in a few iterations. However, each iteration is compu­

tationally more involved than a simplex iteration because at each iteration a system of 

linear equations is solved simultaneously. On the other hand, the number of simplex 

iterations depends on the problem and this number could be very large. One should also 

note that the number of variables needed in the LP formulation is considerably more 

because one needs a variable for each state and for each action in that state. 

In general, VI is considered the method to use for large systems. It is argued that solv­

ing a big system of linear equations is computationally more cumbersome than solving 

the recursive relationships of value functions in VI. Value functions give an approxima­

tion to the average cost per unit time. VI needs quite a few number of iterations before 
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finding a solution within the tolerance limits. At each of these iterations, with a one-pass 

computation, the value functions of the states for the next iteration are computed using 

the values from the previous iteration. However, to compute each value function one 

has to consider the states that can be reached from that particular state because they 

are used in computing the value function for that state. Therefore, the computational 

burden of VI is directly related to the number of states, and to the number states that 

can be reached from each state. One advantage of VI is that it is very easy to write your 

own code. 

VI with the relaxation factor may converge faster (require fewer iterations) if it 

converges at all. However, it is not guaranteed to converge. Also, with many many 

states the overhead that is required to find the relaxation factor and updating the value 

functions can be a burden. Therefore, the plain VI can actually finish earlier although 

with the relaxation the number of iterations is less. 

Often, one is interested in how a particular policy will perform against the others. 

VI and LP cannot be used to evaluate a policy. Both of these methods yield an optimal 

policy only when they finish. PI, on the other hand, evaluates a policy at each value-

determination step. Therefore, it is useful to evaluate a policy which is a major advantage 

of this algorithm. 
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APPENDIX B A RESOURCE ALLOCATION PROBLEM 

If the controller uses a probabilistic rule rather than a state-dependent rule in taking 

its decisions, then the problem falls into the category of resource allocation problems. 

We have been calling this probabilistic rule the Bernoulli-splitting rule. Due to its wide 

applications this has been the topic for several research papers including Tang and van 

Vliet [49], Mitrani and Wright [32], and Lee [27] among others. Buzen and Chen [5] 

is one of the earlier publications on the subject. Although, in more general cases the 

optimal probabilities have to be obtained by solving a nonlinear optimization problem, 

with M/M/1 queues the closed-form solution for them can be written e.xplicitly. These 

formulae have been given by Bonomi and Kumar [4]. Here we offer another and easier 

way of solving for them. 

The problem can be stated as 

mmimize 

such that 

m 

1=1 
0 < A,- "t" p,Ao < Vf. 

Now, consider a relaxation of this problem 

mmimize 
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such that 

m 

1 (B. l )  
1=1 

A,- + piXo < m, Vi, (B-2) 

where we have ignored the lower bounds. 

Both of these problems are separable and convex problems. Ibaraki and Katoh [21] 

show that for this type of problem if any solution is negative it can be set at 0. Their 

proof involves relaxation of the upper bound, but a similar proof applies here. Based on 

this knowledge one can give an easy algorithm to find the optimal probabilities. 

1. Set / = 1, ..., m and k = m. 

2. Solve the relaxed problem for p = pi, 

3. If Pi > 0, Vi, stop. 

4. Otherwise set p,- = 0 for all i with p,- < 0, say n of them. Set k = k — n and 

I = I — {j £ I\pj < 0} and go to the second step. 

It remains to figure out how to solve for p in Step 2. Consider a problem of the kind 

o p t i m i z e  f { p )  

such that g { p )  =  c, 

where = c represents a set of constraints with k of them. The so called Lagrangian 

Multiplier Rule can then be stated for this problem as 

Theorem B.l Assume f and each gi are differentiable and continuous. Let p an in­

terior point which gives a relative minimum (or maximum). Then, there are numbers 

01, ..., 0i, 00, called Lagrange multipliers, that are not all zero, such that 

4'i9[{P) + - + i^kg'kip) + 0o/'(p) = 0 

g i p )  =  c .  
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Let, J { p )  be the { k  + 1) by m Jacobian matrix 

^ { P )  

f ' i P )  

Then, by the Lagrangian Multiplier Rule the system {xb\ i/'it. i/'o]^(p) = 0 of m 

linear equations in the ^ + 1 unknowns has a non-trivial solution. In matrix theory, 

this is equivalent to every (/: -1- 1) by {k + I) submatrix of J{p) having determinant 

zero. Therefore, to find the candidates p for solutions to the problem we set each such 

determinant to zero to get m — k new conditions on p which one can combine with the 

original constraints. 

The .Jacobian for our relaxed problem is 

1 1 . . .  1  

\o(lm 
(MI—Ai—Pi-\o)2 (MZ—-^2—P2-\o)^ (^m —Am—Pm^o)^ 

Every two by two submatrix should have determinant zero. Taking the first two 

columns as an example we obtain 

Pj. 
(//I - Ai-piAo)^ {p.2 - >^2 - P2>^of 

Solving for p2 in terms of pi we get a quadratic equation with the following solutions 

p2(pi) = . 
Ao/ii 

Since A2 + P2A0 < (J.2 we only need to consider the solution with the negative sign. 

Using the other submatrices we get every p,- in terms of one of them, say pi- Now using 

Constraint B.l we can solve for pi which yields 

^1 

m m 

- A.) + 
t=2 1=2 Ai 

- m 

1=2 

Ao m 

1=1 

AQ 
m 

-1=1 
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In general, V i 

Pi = Y 

m m 

•^0 ~ ~ "1" 
- m 

J - l  J = l  

J#« J5^» A.-
j=i 

m 

E \/ 
Ao m 

i=i j=i 

(B.3) 
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